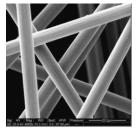
MSE 214 Composites A

Les matériaux composites

- Les fibres, les matrices
- . Micromécanique et anisotropie
- . Les procédés de mise en oeuvre
- Les développements récents
 Biocomposites
 Composites auto-réparables

Nanocomposites


Références:

Traité des Matériaux, vol. 15
" Matériaux composites à matrice organique"

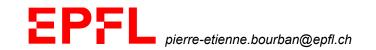
Presse Polytechniques et Universitaires Romandes

www.reinforcedplastics.com

Des fibres aux stratifiés

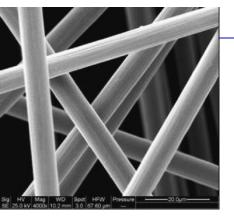
Rigidités et anisotropies exploitées

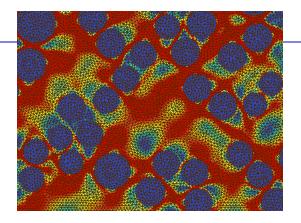
BMW i8 automobile.challenges

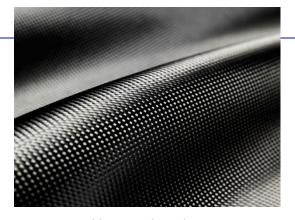


Introduction aux matériaux composites

MSE-214/215 Ingénierie des matériaux


pierre-etienne.bourban@epfl.ch


Institut des matériaux (IMX)
Discovery Learning Labs (DLL)
Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne



www.....composites....

www.reinforcedplastics.com

www.onera.fr

blog.motorlegend.com

www.coriolis-composites.com

Boeing

BMW i8 automobile.challenges

Hublot

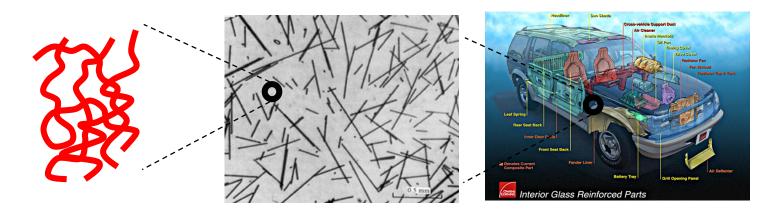
www.evolo.us

Biblio

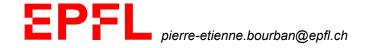
Traité des Matériaux, vol 15, ppup. EPFL-Lausanne

Comprehensive composite materials, Kelly A, Zweben C. ed., Elsevier

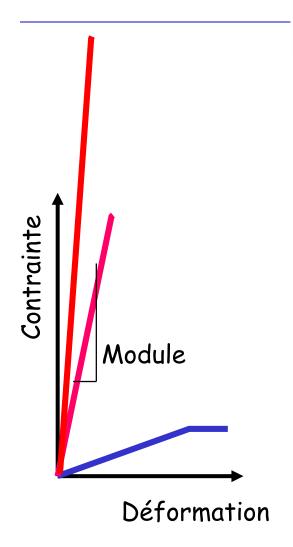
Matériaux composites, D. Gay, Hermes, 1997,2005

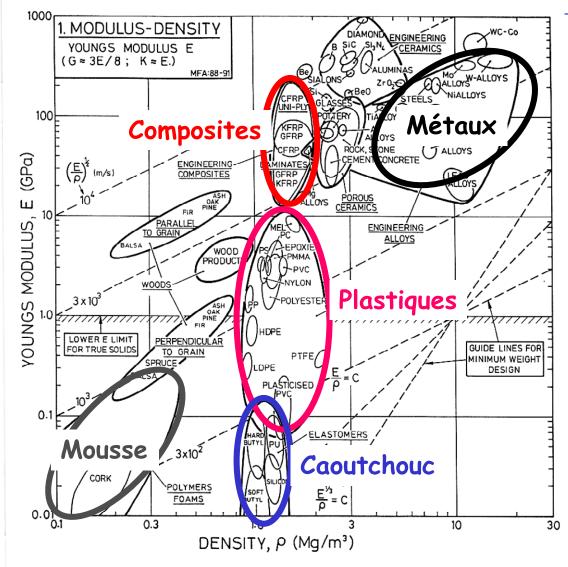

From bakelite to composite, design in new materials Bucquoy E. ed., Stichting Kunstboek, Gent,

Process modeling in Composites manufacturing, S. Advani, M. Sozer, Marcel Dekker



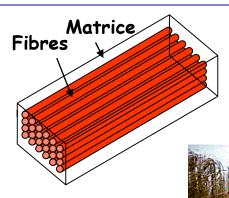
Les polymères et leurs composites


- > Introduction
- > Applications
- > Composants
- > Mécanique

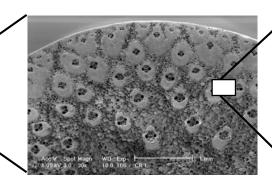


Matrice continue et renforts

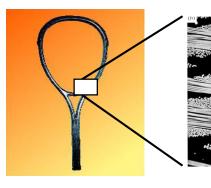
Propriétés: module - densité

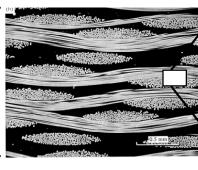


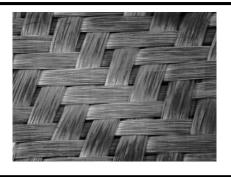
Matériaux composites

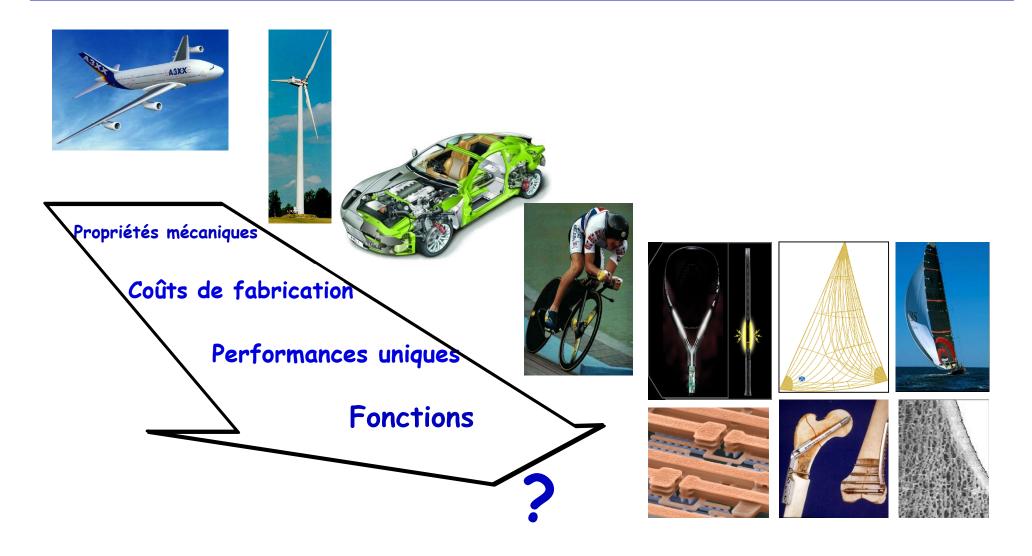


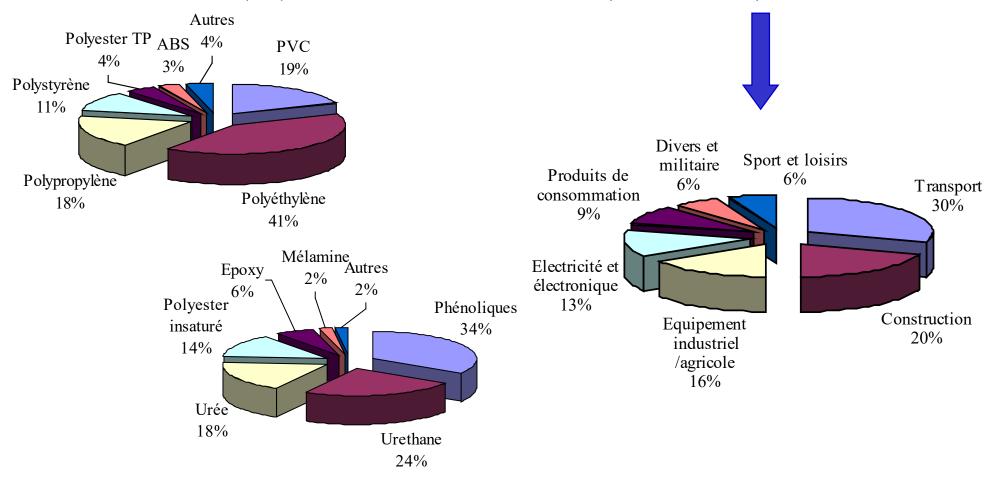
bois torchis ti carapaces d'insectes


tissus vivants


béton armé






Evolution des composites

Polymères et composites organiques

Les polymères,dont 5. 10 6 t. pour les composites

Applications des composites

Sports et loisirs

Raquette de tennis, skis, clubs de golf, perches pour le saut, arcs et flêches, casques, cannes à pêche

Mécanique

Engrenages, boîtiers, corps de vérin, bras de robots, roues inertielles, éléments de métiers à tisser, tuyauterie, bouteilles sous pression, tubes de forage, pneus.....

Piscines, panneaux de façades, profilés, mobilier, coffrages, éléments de ponts...

Isolants, supports de circuits imprimés, capots, antennes, radômes, chemins de cable, éoliennes

Applications pour le transport

Coques de bateaux, hovercrafts, voilier de compétition, mats,...

Transport maritime

Transport aérien

Transport routier

Transport spatial

Transport filaire

Avions de tourismes et planeurs 'tout composite Pièces d'avions: bords d'attaque, volets, dérives Planchers, sièges, pales d'hélicoptère...

Pièces de carosseries, pare-chocs, calandres, ressorts de suspension, poutres de chassis, carters, sièges, citernes, caravanes, camions

Transport ferroviaire isothermes, Carosserie de locomotives, wagon, sièges portes, gaines de ventile

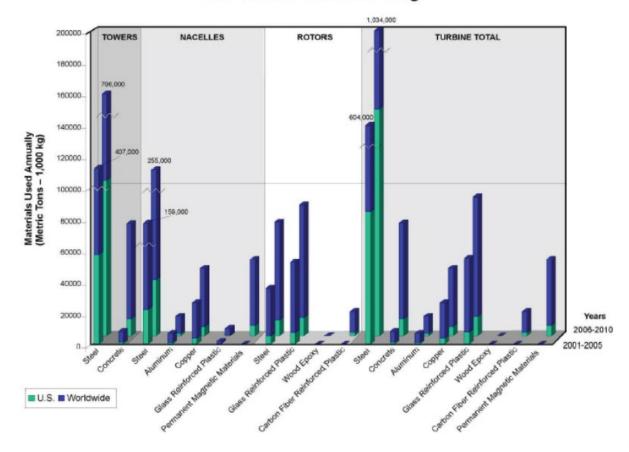
Réservoirs, tuyères, corps de propulseurs

Cabines de téléphériques

Transport aérien

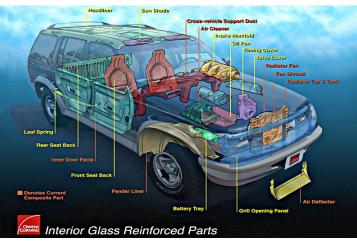
Airbus A350 XWB stringers and frames

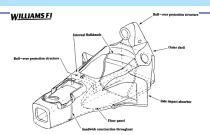
Automated stiffener forming (ASF) for linear stringers



Energie

www.rhoneole.ch


Wind Turbine Materials Usage

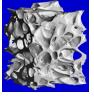


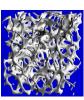
Transport automobile

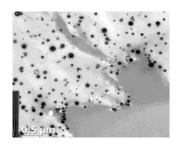
Sport

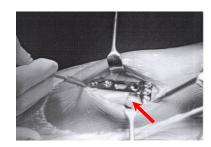
Horlogerie

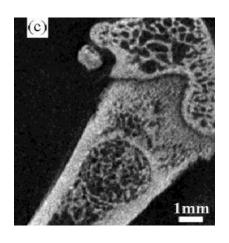
Oak Carbon http://www.audemarspiguet.com

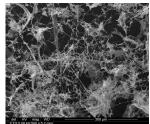


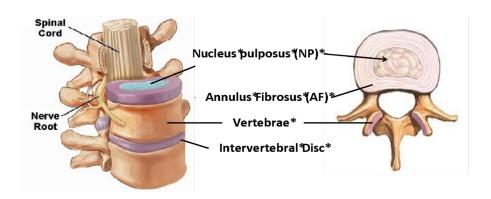



Composites pour le biomédical

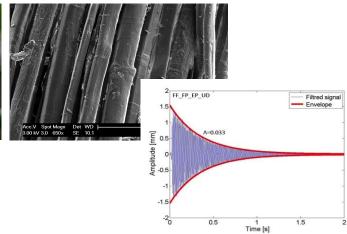

Mousses composites biorésorbables







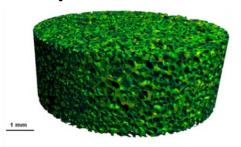
Hydrogels composites

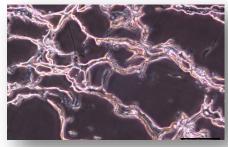


Biocomposites naturels

Composites à fibres naturelles

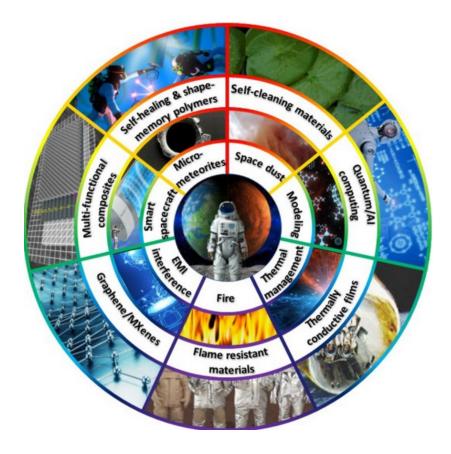
Artengo: flax(5%)/ carbon epoxy

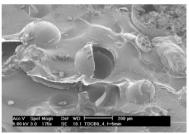

epoxy


Museeuw: flax/carbon

Stockli

Composites biodégradables

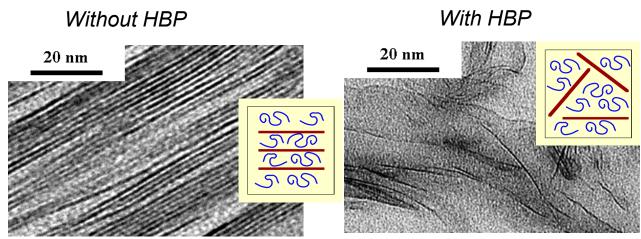



0 [mm] 0.186

Smart Composites

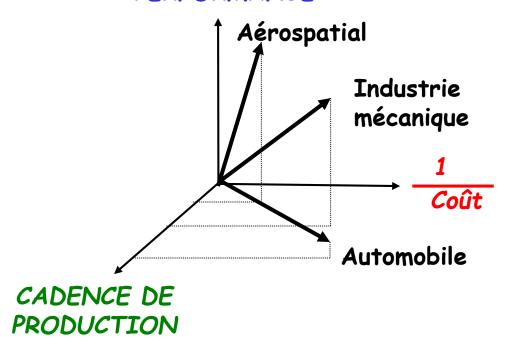
Kirkby, 2005

Functionnal active fibres and/or particles EPFL-LPAC, Véronique Michaud



ADAPT project

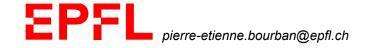
Nanocomposites


Nanocomposite structures

Christopher Plummer, LMOM-IMX

Motivations

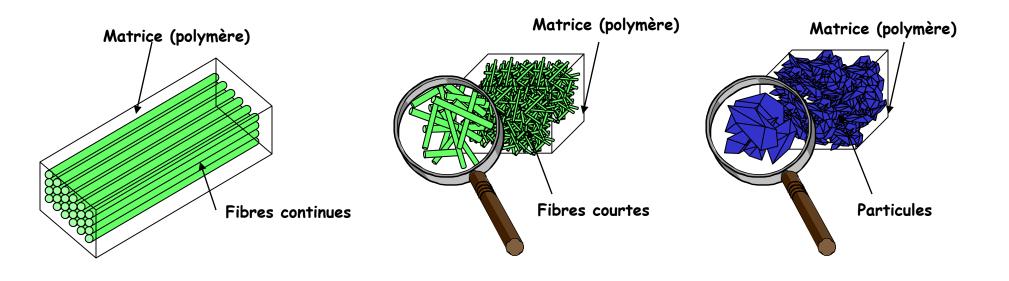
PERFORMANCE

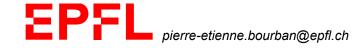

Pourquoi utiliser des composites ?

Personnalisation des propriétés mécaniques et physiques

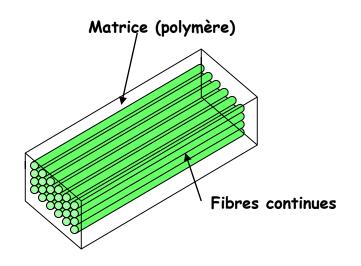
Liberté de design: par example, un CET ~ 0, anisotropie et morphing....

Rigidités spécifiques élevées, une réduction de poids tout en gardant la rigidité et la résistance, résistance à la fatigue, résistance à l'impact, résistance à la corrosion....

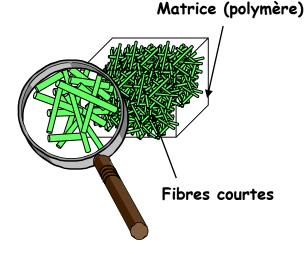

Fabrication intégrée

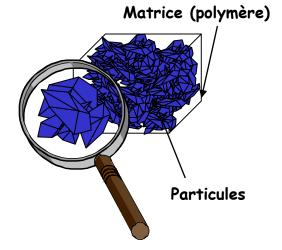


Matériaux composites

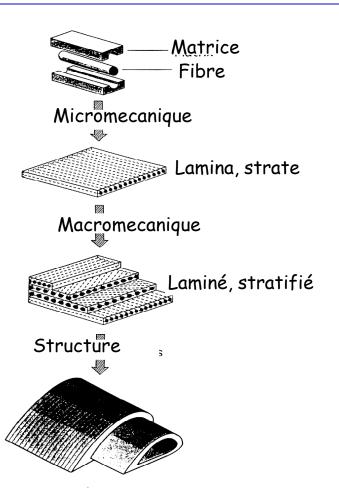

Une combinaison et une synergie entre deux et plusieurs matériaux

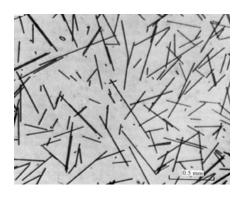
Un matériau constitué d'une matrice continue contenant un renfort sous forme de fibres ou de particules.

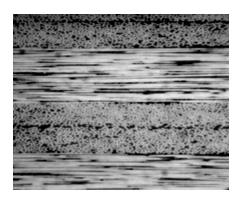



Matériaux composites

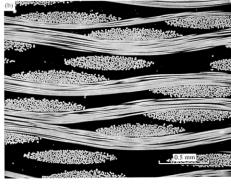
- ·Fibres orientées
- ·Composites unidirectionnels (UD)
- •Thermodurcis, thermoplastiques
- ·Haute performance mécanique
- · Anisotropie
- ·Aerospatiale, sport, réservoirs sous pression...

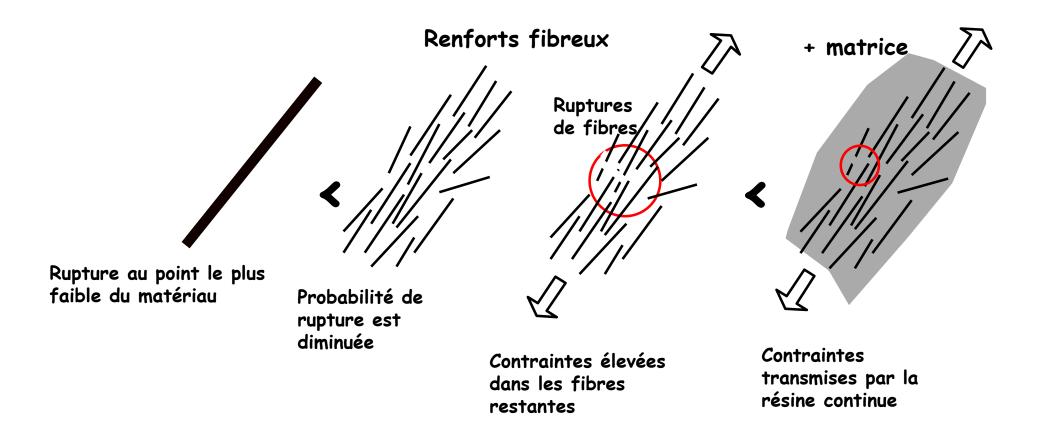

- Distribution de fibres courtes (< 3mm)
- Surtout des matrices thermoplastiques
- ·Isotropie
- ·Moulage par injection
- ·Mécanique, microtechnique, automobile....

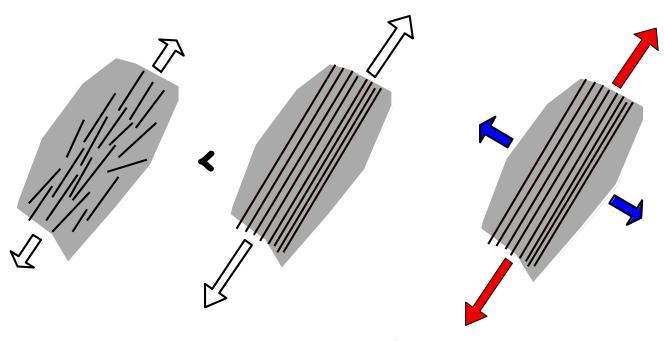



- ·Particules (1-400μm), silice, argile...
- ·Thermodurs and thermoplastiques
- ·Amélioration des propriétés
- · Stabilité dimensionnelles
- ·Reduction de coût
- ·Moulage par injection, coulée
- ·Mécanique, microthecnique, dentisterie....

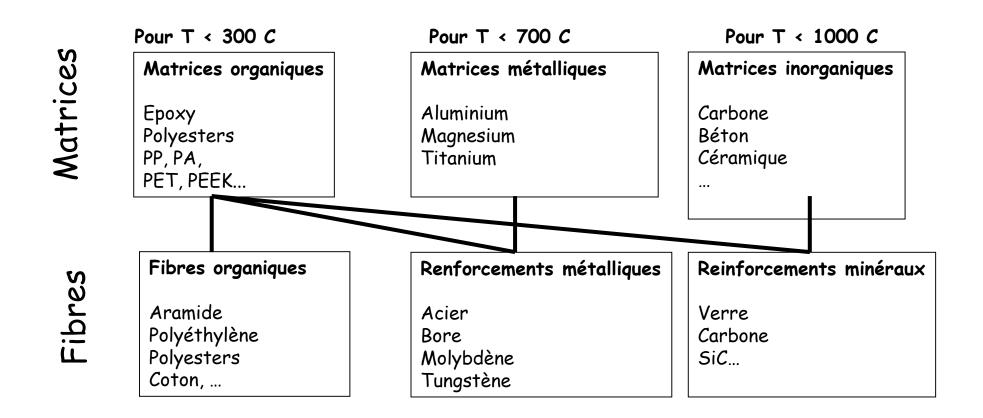



Structure des composites



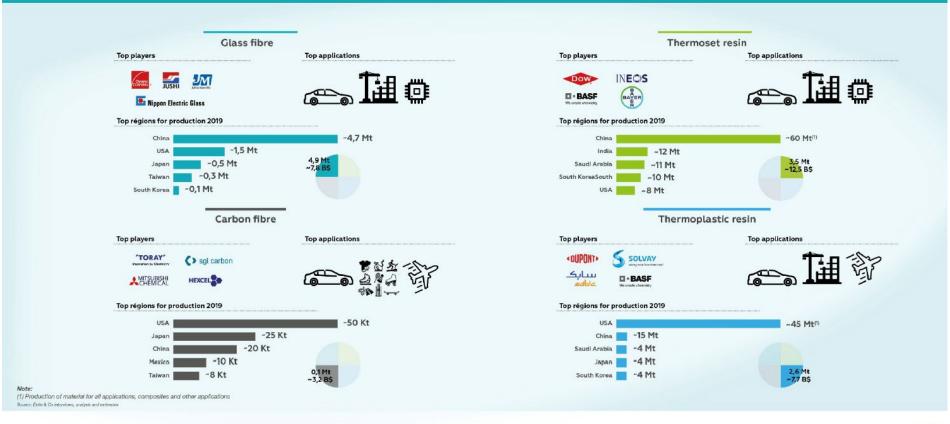


Pourquoi des renforts?



Anisotropie

Renforts continus, orientés


Renforts et matrices

Les marchés

Overview of the global composites' material market in 2019⁽¹⁾

Applications des composites à fibres de carbone

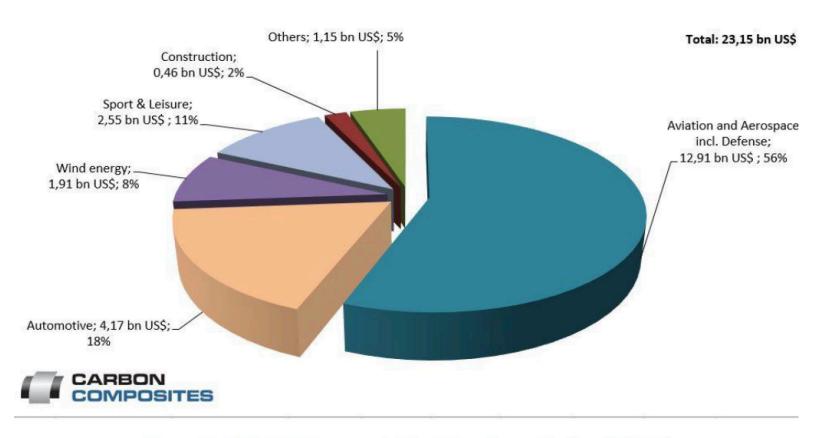
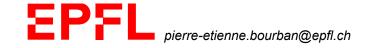


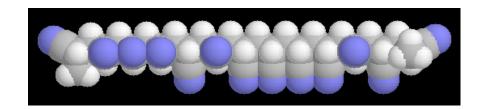
Figure 10: Global CC-Turnover in Thsd. Tons by application (11/2018).


Sources: CC Schweiz, Suschem report

Les fibres de carbone

Historique: initialement à partir de résidus du pétrole (brai) pour des filaments de lampe...s' améliore dans les années 60 grâce à des traitements thermiques ou d'oxydation.

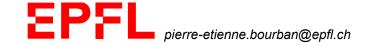
2 méthodes principales:


- A partir d'un polymère précurseur, le PAN (fibre acrylique)
- A partir du brai.

Les fibres PAN: Fabrication

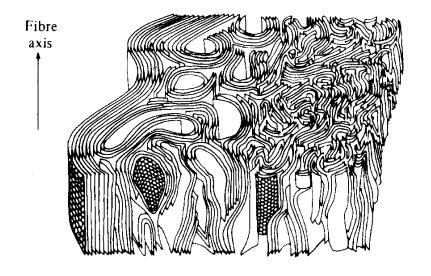
Fibres à base de PAN

$$-\text{CH}_2-\text{CH}_{\overline{n}}$$
 $C \equiv N$

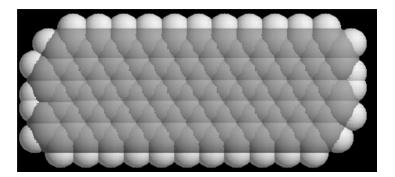


Fabrication

- 1- filage et étirage du PAN
- 2- stabilisation 200 à 300°C dans l'air pendant 30 minutes
- 3- Carbonisation 1000 à 1600°C dans l'azote pour


High Strength HS, 2500 à 2800° C pour High Modulus HM (sous tension)

4- Traitement de surface: oxidation anodique dans la soude...



Structure

Les fibres de C obtenues par pyrolyse d'un précurseur polyacrylonitrile (PAN) possèdent des propriétés mécaniques exceptionnelles

Représentation schématique d'une fibre de ${\it C}$

Propriétés

Propriétés des fibres base PAN:

HS: E = 200 à 400 Gpa,

Résistance: 3.6 à 4.6 Gpa,

% élongation: 1.4-1.8

HM: E = 600-800 Gpa,

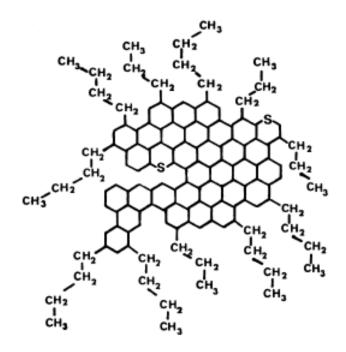
Résistance : 3.6 à 4 Gpa,

%élongation: 0.5-0.8

Module transverse: environ 10 Gpa

Coefficient d'Expansion thermique longitudinal: -0.3 à -0.7 10-6/° C

Types et Propriétés


Table 2 Mechanical and other properties of types of CFs extracted from manufacturers' data sheets.

Mfr.	Fiber type	Filament count	Filament diameter (µm)	Surface area (m² g ⁻¹)	Tensile strength (MPa)	Tensile modulus (GPa)	Tensile strain (%)	Density (g cm ⁻³)
Amoco	T-300	1k, 12k	7.0	0.45	3650	231	1.4	1.76
[Thornel]	T-40	12k	5.1	0.5	5650	290	1.8	1.81
	T650/42	6k, 12k	5.1	0.5	4620	290	1.6	1.78
	T-50	3k, 6k	6.5	0.45	2900	390	0.7	1.81
Hexcel	AS4	3k, 12k			3930	221	1.7	1.79
	IM4	12k			4138	276	1.5	1.73
	IM7	6k, 12k			5379	276	1.8	1.77
	UHM	3k, 12k			3447	441	0.8	1.87
Mitsubishi	TR30	3k			3530	235	1.5	1.79
rayon	TR50	12k			4900	235	2.1	1.80
[Pyrofil]	MR50k	12k			5490	294	1.8	1.80
	SR50	12k			4220	490	0.9	1.88
Sigrafil	C30		6.8		3000	230	1.4	1.78
	C35		7.0		3200	210	1.4	1.8
Tenax	HTA	1k, 24k	7.0		3950	238	1.5	1.77
	UTS	12k	7.0		4800	240	2.0	1.8
	IMS	6k, 24k	5.0		5500	290	1.9	1.8
	UMS	12k	4.7		4500	435	1.1	1.81
Toho	HTA	3k, 12k	7.0		3920	235	1.7	1.77
rayon	ST4	12K	7.0		4810	240	2.0	1.78
[Besfight]	IM600	12k, 24k	5.0		5790	285	2.0	1.80
	HM35	12k	6.7		3240	345	0.9	1.79
	TM40	12k	6.2		3430	390	0.9	1.85
	UM68	12k	4.1		3330	650	0.5	1.97
Toray	T300*	1 - 12k	7.0		3530	230	1.5	1.76
[Torayca]	T300J*	3k, 12k	7.0		4210	230	1.8	1.78
 available 	T700S	12k	7.0		4900	230	2.1	1.80
from	T800H*	6k	5.0		5490	294	1.9	1.81
Soficar	T1000G	12k	5.0		6370	294	2.2	1.80
	M40J*	6k	5.0		4410	377	1.2	1.77
	M 50J	6k	5.0		4120	475	0.8	1.88
	M 60J	3k, 6k	5.0		3820	588	0.7	1.94
	X665	6k	5.0		3430	637	0.5	1.98
	M40*	6k, 12k	7.0		2740	392	0.7	1.81
Zoltek	Panex33	48k, 320k	7.4		3600	228		1.78
[Panex]	Panex30				1552	221		1.75

Les fibres à base de brai

le brai forme des cristaux liquides si traité thermiquement, que l'on peut orienter par filage

Natural Pitch

Figure 5 A naturally occurring pitch with a large aromatic core and long solubilizing alkyl groups, MW = 3200. The thermally unstable alkyl groups cleave off at spinning temperatures to cause unsatisfactory bubbling.

Fabrication

Fibres à base de brai:

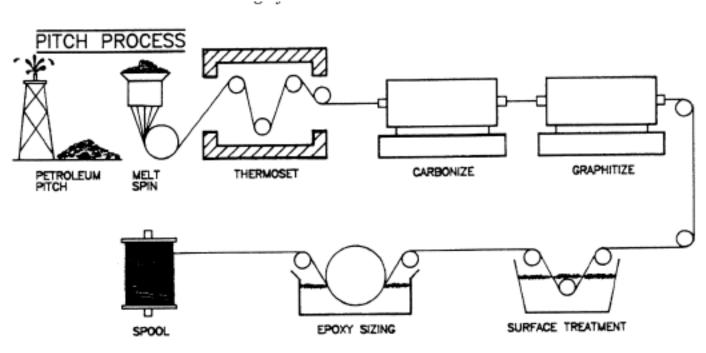
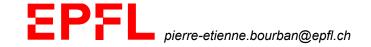


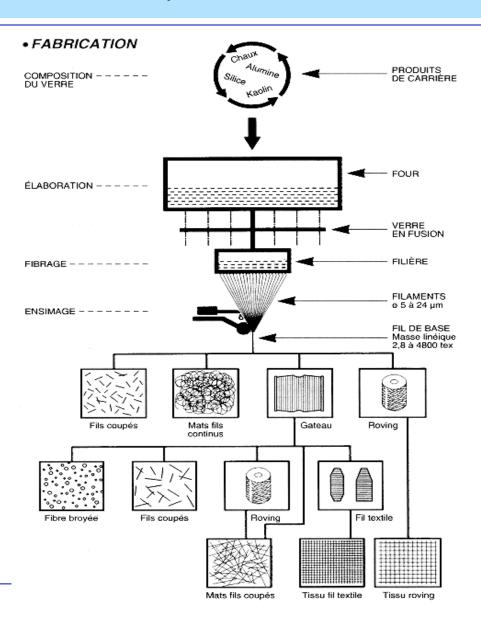
Figure 13 Pitch precursor carbon fiber process. Pitch is melt spun into fibers that are thermoset and then carbonized to carbon fibers. The modulus of mesophase pitch precursor carbon fibers is increased by subsequently heating to a high temperature, and the surface of the fiber is etched for improved bonding with a resin matrix (reproduced by permission of Fiber Producer, Greenville, from Fiber Producer, 1979, pp. 16-21).

Types et propriétés

Fibres à base de brai: Modules: 160 à 930 Gpa, Résistance: 1.4 à 3 Gpa Fibres très chères et donc moins utilisées.

Table 3 Manufacturer's data on mechanical properties.


	Tensile modulus (GPa)	Tensile strength (GPa)	Density (g cm ⁻³)
BP-Amoco			
P-25	160	1.4	1.90
P-55S	380	1.9	2.00
P-75S	520	2.1	2.00
P-100	760	2.4	2.16
P-120	830	2.4	2.17
K-800x	930	2.9	2.18
K-1100	930	3.1	2.20
Mitsubishi Kasei			
K133	440	2.4	2.08
K135	540	2.6	2.10
K137	640	2.7	2.11
K139	740	2.8	2.12
K321	180	2.0	1.90
Nippon graphite fiber			
YS-50A	520	3.8	2.09
YS-60	590	3.5	2.12
YS-70A	720	3.6	2.14
YS-80	785	3.5	2.15
Isotropic pitch Kureha			
T101F	33.0	0.80	1.81
T201F	33.0	0.70	1.57


Les fibres de verre

Propriétés des filaments:

- •Taille, 10 à 20 µm de diamètre
- Module 70 GPa, jusqu'à 90 GPa
- Résistance à rupture: 3.95 GPa si fraîche, moins dans la pratique 1 à 2 GPa.
- Points négatifs: Résistance aux acides, abrasion, corrosion sous contrainte dans l'eau.
- · Coût: quelques CHF/kg, jusqu'à beaucoup plus pour le Quartzel.

Fabrication

Compositions

Table 1 Composition ranges for the oxides used in specific commercial glass fibers.

Oxide	A-Glass (%)	C-Glass (%)	D-Glass (%)	E-Glass (%)	ECR-Glass (%)	AR-Glass (%)	R-Glass (%)	S-2-Glass (%)	No boron E-Glass (%)
SiO ₂	63-72	64–68	72–75	52-56	54-62	55–75	55–65	64-66	52-62
Al_2O_3	0-6	3-5	0-1	12 - 16	9-15	0-5	15 - 30	24-25	12-16
B_2O_3	0–6	4-6	21-24	5-10		0–8			
CaO	6-10	11-15	0-1	16-25	17-25	1-10	9-25	0-0.1	16-25
MgO	0-4	2-4		0-5	0-4		3-8	9.5-10	0-5
ZnO					2-5				
BaO		0-1							
Li ₂ O						0-1.5			
$Na_2O + K_2O$	14 - 16	7-10	0-4	0-2	0-2	11-21	0 - 1	0-0.2	0-2
TiO ₂	0-06			0-1.5	0-4	0-12			0-1.5
ZrO_2						1-18			
Fe_2O_3	0-0.5	0-0.8	0-0.3	0-0.8	0-0.8	0-5		0 - 0.1	0-0.8
F_2	0-0.4			0–1		0-5	0-0.3		0-1.0

Source: Hartman et al., 1996.

Propriétés

E-Glass: Good Electrical properties

But poor chemical resistance against acids

Low cost: $\sim 2.5 / 3$ CHF/Kg

C-Glass: Better resistance to Chemical corrosion

Veil of C-Glass ☐ Element of homogenization

☐ Good quality of surface

D-Glass: High **D**ielectric performances ($\varepsilon = 3.85$ à 1 MHz)

High cost: 40 x E-Glass / Mechanical performances lower than E-Glass

R-Glass: High mechanical **Resistance** (modulus 86GPa)

Cost: 10 x E-Glass / Good resistance to chemical corrosion (slightly < C-Glass)

AR-Glass: Alkali-Resistant

Used in building -> Good chemical resistance against alkalies (and also acids)

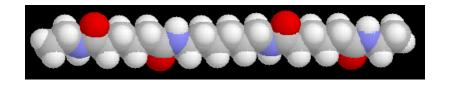
But hydrophilic

Ensimage

Water Spray

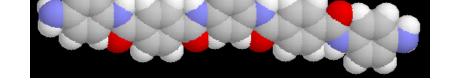
T>100°C

Sizing Applied Glass Fibers

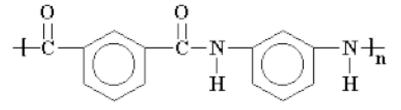

Gathering Shoe

To Secondary processing at > 1000 m/min (200 ms)

Table 8 Glass fiber sizing ingredients and functions.


Ingradient	Function	Typical chemistry
Film formers	Compatibilize with matrix, protect fibers, provide strand integrity	PVAc, epoxies, polyesters, polyurethanes, polyolefins, etc.
Lubricants	Protect fibers, improve forming efficiency	Imidazolines, pentamine streamtes, hydrocarbon waxes, polyethylene glycols, mineral oil/amide esters, etc.
Coupling agents	Reduce aqueous stress corrosion, bonding between glass and resin	Organosilanes, chromates, titanates, and zirconates
Antistats	Reduce static charging via moisture adsorption	Quaternary ammonium compounds, halide salts
Nucleating agents	Increase number of spherulites in semicrystalline matrices	Maleated polypropylene
Surfactants	Emulsify resirs, antifoam, adjust viscosity	Polyoxyethylene nonylphenyl ether, glycol ethers, EO/PO
Acids, bases	pH adjustment	Acetic acid, ammonium hydroxide

Les fibres aramides


Structure chimique du PA 6.6

$$+c - c - c - h - c - h + m + m$$

Le Kevlar® est un PA aromatique découvert en 1972 par DuPont II est hautement cristallin et insoluble. Il fond à plus de 500°C

Structure chimique du Kevlar®

Le Nomex® diffère du Kevlar® par l'existence des groupes meta-phénylène à la place des groupes para-phénylène

Structure chimique du Nomex®

Fabrication

- -extrusion et filage du polymère en solution
- traitement thermique pour augmenter le degré de cristallinité et l'orientation

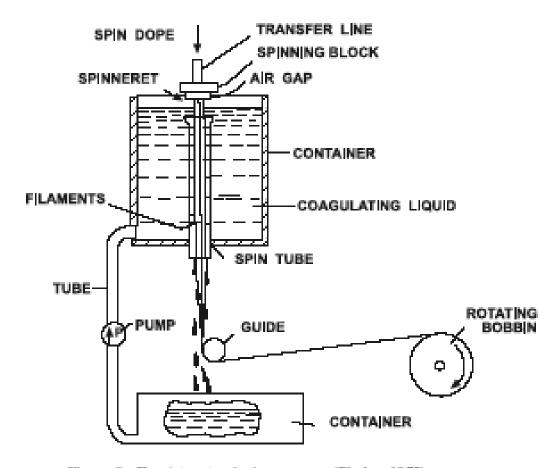
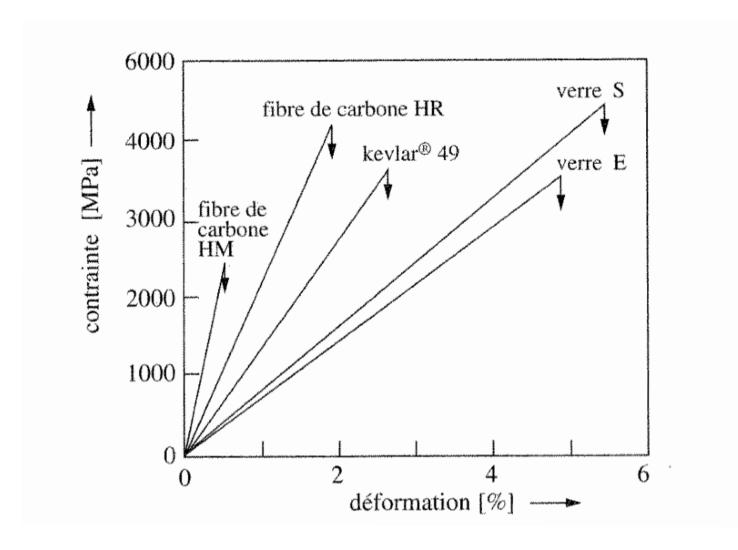


Figure 8 Dry-jet wet spinning process (Blades, 1973).

Propriétés

Propriétés: Module 60 à 125 GPa

- Résistance: 2.7 à 3 GPa


élongation: 2.5 à 3.5 %

-Problèmes: Résistance aux UV, compression.

Product type	Kevlar	Kevlar	Kevlar 49	Kevlar 68	Kevlar 119	Kevlar 129	Keviar KM2
Denier per filament Filament diameter	1.5, 2.25	1.5, 2.25	1.5	2.25	1.5, 2.25	1.5	1.5
(mm)	0.012, 0.015	0.012, 0.015	0.012	0.012	0.012, 0.015	0.012	0.012
Density (g cm ⁻³)	1.44	1.44	1.45	1.44	1.44	1.45	1.44
Tenacity							
(g den ⁻¹)	23	23	23	23.7	24	26.5	26
(GPa)	2.9	2.9	2.9	3.0	3.1	3.4	3.3
Elongation (%)	3.6	3.6	2.8	3.3	4.4	3.3	4.2
Tensile modulus							
(g den ⁻¹)	550	550	950	780	430	780	500
(GPa)	70	70	135	99	55	99	64
Moisture regain (%)	5-7	5-7	3-4	4-6	5-7	4-6	5-7

Comparaison carbone-verre-aramide

Propriétés des fibres polymères

Table 1
Properties of some important synthetic fibers.

Material (fiber)	Tensile modulus (GPa)	Tensile strength (GPa)	Compressive strength (GPa)	Density (gcm ⁻⁸)
Steel	200	2.8		7.8
Al alloy	71	0.6		2.7
Ti alloy	106	1.2		4.5
Alumina	350-380	1.7	6.9	3.9
Boron	415	3.5	5.9	2.5-2.6
SiC	200	2.8	3.1	2.8
S-glass	90	4.5	> 1.1	2.46
Carbon P100	725	2.2	0.48	2.15
(pitch-based)				
Carbon M60J	585	3.8	1.67	1.94
(PAN-based)				
Kevlar 49	125	3.5	0.39 - 0.48	1.45
Kevlar 149	185	3.4	0.32 - 0.46	1.47
PBZT	325	4.1	0.26 - 0.41	1.58
PBZO	360	5.7	0.2 - 0.4	1.58
Spectra 1000	172	3.0	0.17	1.0
Vectran	65	2.9		1.4
Technora	70	3.0		1.39
Nylon	6	1.0	0.1	1.14
Textile PET	12	1.2	0.09	1.39

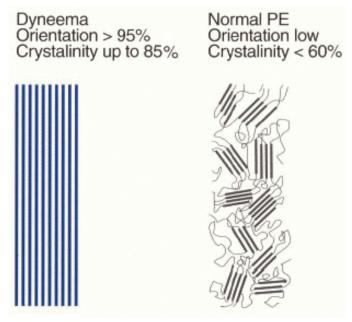
Progression des fibres synthétiques

Fibre Type & Initial producer	Repeat Unit in the Macromolecule	Maximum Elastic Modulus (GPa)	Melting pt. or decomp. temp. °C
Polyamide 6 [Nylon 6]	-{NH−CH ₂ CH ₂	4	230
I.G.Farben Polyamide 6/6 [Nylon 6.6] Du Pont	-{nh-ch,-ch,-ch,-ch,-ch,-ch,-nh-co-ch,-ch,-ch,-ch,-ch,-co-	~5	260
Polyethylene terephthalate [Polyester] ICI		~15	260
Poly(m- phenylenediami ne- isophthalamide) Nomex Du Pont	[-NCO - C]	17	400
Poly- paraphenylene/3 ,4-diphenylether terephthalamide [Technora] Teijin	$+INN- \longrightarrow NIRXC - \longrightarrow CCO + $	70	500
Poly(p- phenylene terephthalamide) [Kevlar] Du Pont	[HNCOCO]	135	550
Poly(p- phenylene benzobisoxqazol e) PBO [Zylon] Toyobo		280	650
Poly{2,6- dimidazo [4.5-b:4',5-e] pyridinylene-1,4 (2,5-dihydroxy) phenylene} (PIPD) M5 AKZO	OH NH NH OH	330	650

Accroissement de la rigidité des unités macromoléculaires

D'autres fibres...

<u>UHMW-PE</u>


(Ultra High Molecular Weight PE) Modulus: 85-98 Gpa, σ_{max} =2.5-3.1 GPa Spectra® melting point at Dyneema® 150° C

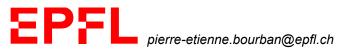
Exotic Organic Fibers

Zylon® [PBO (poly(p-phenylene-2,6-benzobisoxazole))]

Vectran® [LCP (Liquid Crystal Polymer)]

And other fibers?

Normal polyethylene has a low orientation and crystallinity generally below 60%; Dyneema Purity has an orientation of approx. 98% and crystallinity up to 85%.


	Density	Tensile strength	Tensile modulus	Moisture regain	Thermal expansion	Dielect	ric cst	Dielectric	Chemical
	g/cm ³	MPa	GPa	%	10 ⁻⁶ .K ⁻¹	100KHz	1MHz	strength KV/mm	resistance
Zylon-HM	1.56	5800	280	0.6	-6	3	2.1	970	Very good
Vectran	1.4	2800-3200	65-71	< 0,1	-4.8	3,3 à	1 KHz	-	Very good

Basalt (basaltex)

Les fibres

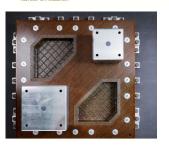
Fibres	Avantages	Inconvénients
Verre	+++ prix + rapport performances mécaniques/prix ++ résistance spécifique ++ caractéristiques diélectriques ++ résistance élevée à T ++ conductivité et dilatation thermiques faibles	vieillissement au contact de l'eau résistance aux acides et bases densité module
Carbone	++++ caractéristiques mécaniques +++ inertie chimique + densité ++ tenue en température ++ faible coefficient d'expansion thermique ++ bonne conductibilité thermique	résistance aux chocs résistance à l'abrasion Corrosion galvanique au contact des métaux - prix élevé
Aramide (Kevlar®)	++++ résistance aux chocs ++ résistance à la traction ++ faible densité ++ dilatation thermique nulle ++ résistance a la fatigue et à l'abrasion ++comportement chimique	prix élevé usinabilité tenue en compression prise d'humidité importante adhérence à la matrice - décomposition à 400°C
Polyéthylène (Dyneema®)	++++ résistance aux chocs +++ faible densité +++ comportement chimique ++ résistance à la traction	point de fusion à 150° adhérence avec la matrice - usinabilité

Les fibres naturelles

Chanvre, lin, jute, sisal, etc... Abaca des Philippines, Noix de coco...

http://www.bmedesign.eu/bamboo-composite-frame

Mercedes A200

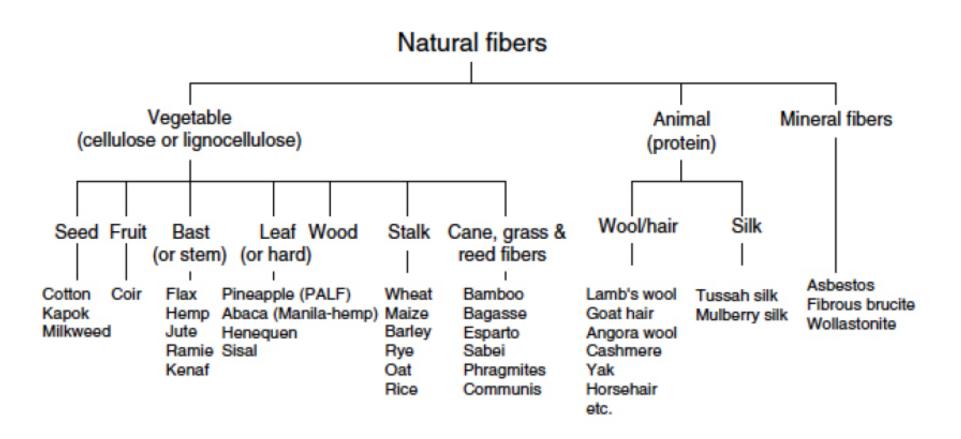


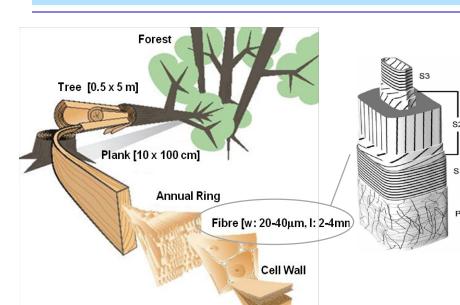
http://en.artengo.com/

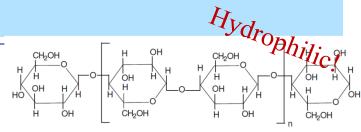
https://www.bcomp.ch/

Thanks to the powerRibsTM technology, it is the first time that natural fibre composites can replace carbon fibres. ©McLaren

Ritsumasyl record-breaking bio-composite bridge

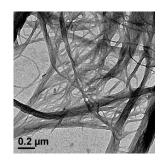





http://www.notox.fr/

Fabrication

Fabrication


Microfibrils: Cellulose

Matrix: Hemicellulose and Lignin

Wood Fiber (WF)

Microfibrillated cellulose (MFC)

The state of the s

* adapted from Neagu et al., PhD Thesis, KTH, 2006 and Mathew et al., 2005

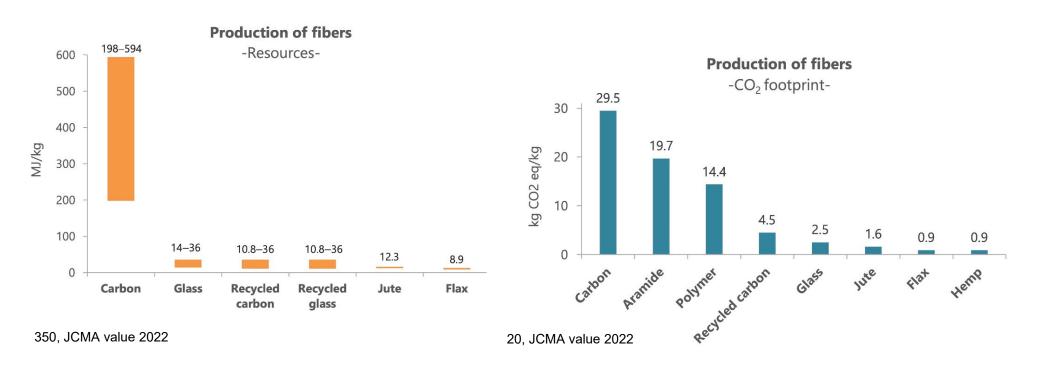
Length l	2 to 4 mm	Few µm
Diameter d	20 to 60 μm	10-100 nm
Aspect ratio (l/d)	~ 80	~ 100
Young's Modulus (GPa)	40	70-130 (?)

Molecule [< 1 nm]

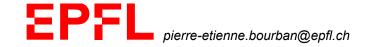
Microfibrils [w: 10 nm, I: few μm]
Crystalline region [I>500nm]

Propriétés

Fiber	Density (g cm ⁻³)	Diameter (µm)	Tensile Strength (MPa)	Young's Modulus (GPa)	Elongation at Break (%)
Flax	1.5	40-600	345-1500	27.6	2.7-3.2
Hemp	1.47	25-500	690	70	1.6
Jute	1.3-1.49	25-200	393-800	13-26.5	1.16-1.5
Kenaf			930	53	1.6
Ramie	1.55	_	400-938	61.4-128	1.2 - 3.8
Nettle			650	38	1.7
Sisal	1.45	50-200	468-700	9.4-22	3–7
Henequen					
PALF		20-80	413-1627	34.5-82.5	1.6
Abaca			430-760		
Oil palm EFB	0.7 - 1.55	150-500	248	3.2	25
Oil palm mesocarp			80	0.5	17
Cotton	1.5-1.6	12-38	287-800	5.5-12.6	7–8
Coir	1.15-1.46	100-460	131-220	4-6	15 -4 0
E-glass	2.55	<17	3400	73	2.5
Kevlar	1.44		3000	60	2.5-3.7
Carbon	1.78	5–7	3400a-4800b	240b-425a	1.4-1.8

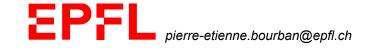

a Ultra high modulus carbon fibers.

- + écologiques, peu chères, bonne tenue mécanique
- dispersion des propriétés, mise en oeuvre



b Ultra high tenacity carbon fibers.

Ressources nécessaires et impact CO_2 d'un kilo de fibres


Sources: Ecoinvent database; JEC observer 2021: Current trends in the global composite industry 2020-2050; Niels de Beus, Michael Carus, Martha Barth. 2019: Carbon footprint and sustainability of different natural fibres for biocomposite and insulation material, Teijin website, Dyneema website, JCMA website

Critères de choix des fibres

Cahier des charges du produit à réaliser:

- compromis rigidité/masse/coût
- élongation à rupture
- température d'utilisation
- résistance à l'impact, en compression, en cisaillement...
- résistance chimique, aux UV, corrosion
- conductivité électrique, thermique
- coefficient d'expansion thermique de la pièce
- compatibilité avec la matrice choisie
- choix de la technique de mise en oeuvre

Prix des fibres

Swiss-Composite.ch/Global tools,: on line stores

in CHF/kg, bobbins

Glass: 5-15

Kevlar: ~100

Carbon (HTS): 1k: 800

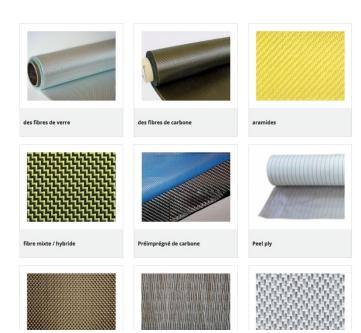
3k: 274

6k: 147

12k: 100

24k: 122

60k:80


Basalt: 10-15

In CHF/m², fabrics

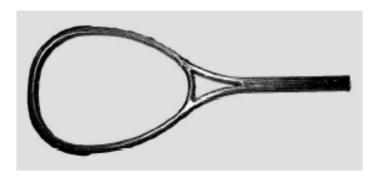
3-10 for $100 \stackrel{.}{a} 200g/m^2$

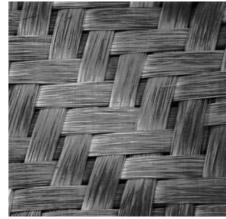
~ 30

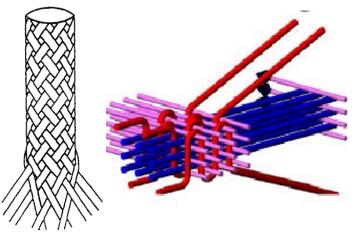
30 to 100

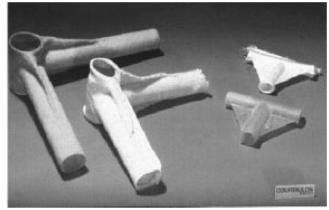
Potentiels de renforcement

Verre Aramide Acier Carbone Matériaux E Module (Gpa) 400 0 Forme courtes longues Particules Fibres: discontinues continues Facteur de forme L/d ∞ Aléatoire **Tricot** Tissu Configuration Orientation 1






Les composites textiles



Les matrices polymères

Thermodurcis

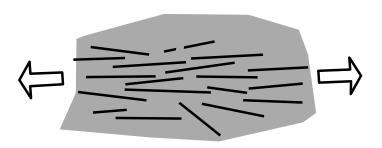
- + Résincs liquides à pambiante
- + Facilité de mise en oeuvre (EP, UP) **Avantages**
 - + Durcissement entre 5 et 180C (EP)
 - + Prix raisonnable
 - + Grande variété de formulation possibles
 - + Bonie adhésion aux fibres
 - + Résistance a la température variable

Inconvénients - Volatilité, toxicité, allergies

- Résistance à l'humidité
- Résistance aux chocs
- Controle de la réaction chimique

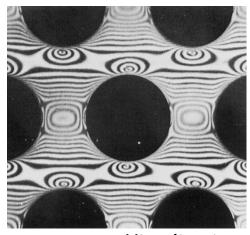
Thermoplastiques

- + Mise en oe vre rapide, par élévation de T
- + Procédés de mise en ouvre des thermoplastiques utilisable avec les fibres courtes
- + Bonne résistance à l'humidité


Inconvénients

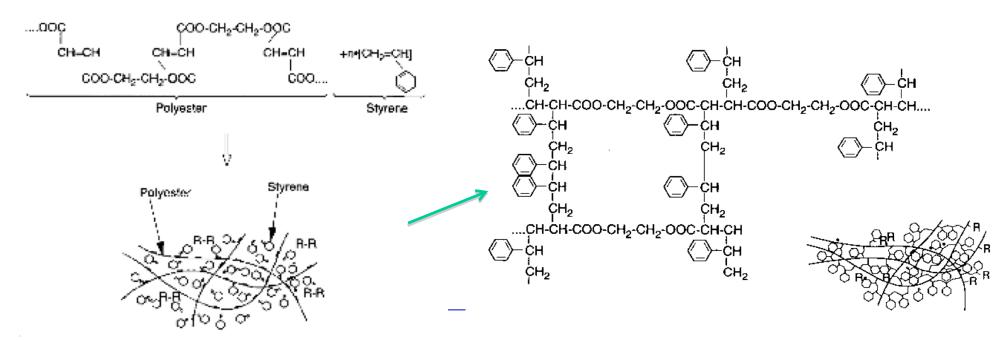
Avantages

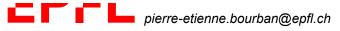
- Souvent peu résistantes à la T
- Retrait au moulage (matrices s- c)
- Mauvaise résistance chimique
- Adhésion aux fibres souvent problématique
- Propriétés mécaniques faibles, fluage


Les matrices polymères

Rôle de la matrice: assurer le transfert et la répartition des charges (contraintes) entre les fibres

- Faible viscosité (pour imprégner facilement les fibres)
- Proprietés mécaniques élevées
- Bonne résistance thermique
- Bonne résistance chimique et à l'humidité
- Adhésion elevée aux fibres
- Faiple retrait à la mise en œuvre
- Résistance au feu et à l'émission des gaz toxiques
- Bas prix

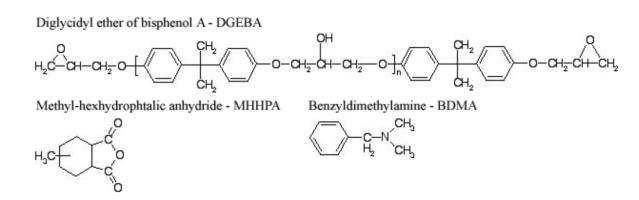



Visualisation des isochromes (lignes d'isocontraintes) dans une matrice polymère enrobant des fibres et à la pointe d'une fibre

Les matrices thermodurcissables

Polyesters insaturés : couramment utilisés (coques, grands panneaux, automobile).

Préparation: en solution dans le styrène, ajout de catalyseur et d'inhibiteurs de réaction.



Les matrices thermodurcissables

Epoxydes: Découvertes en Suisse par Ciba en 1943.

Préparation: monomère et durcisseur (amine ou anhydride) -> réseau tridimensionnel, insoluble et infusible

Les matrices thermoplastiques

Thermoplastiques linéaires, amorphes ou semi-cristallins

•	•
Polyamide (PA)	H O
Polypropylène (PP)	CH ₂ CH
	Me
Poly(2,6-diméthyl-1,4-phénylène éther) (PPE) amorphe	Me O- Me
Poly(p-phénylène-éther-sulfone) (PES) amorphe	
Polyétherimide (PEI) amorphe	$\begin{array}{c} \begin{array}{c} Me \\ -C \\ Me \end{array} \\ \begin{array}{c} OC \\ -C \\ -C \end{array} \\ \end{array}$
Poly(p-phénylène-éther-éther-cétone) (PEEK) semicristallin	-o-(
Poly(sulfure de p-phénylène) (PPS) semicristallin	-\(\sigma\)-s-
Polycarbonate de bisphénol-A (PC) amorphe	-O-CO- CH ₃ -O-CO-

Prix et températures de transition

		Pr	ices	Transition to	emperatures
Type	Abbreviation	(\$lb ⁻¹)	(\$kg ⁻¹)	T _g (°C)	T _m (°C)
Polyolefins					
Polyethylene, low-density	LDPE	0.41	0.90	- 90	120
Polyethylene, high-density	HDPE	0.39	0.86	- 30	135
Polypropylene	PP	0.28	0.62	-20	165
Styrenics					
Polystyrene, "crystal"	PS	0.39	0.86	100	am
Polystyrene, impact mod.	HIPS	0.44	0.97	100	am
Acrylonitrile/butadiene/styrene	ABS	0.90	1.98	100	am
Styrene/acrylonitrile	SAN	0.87	1.91	110	am
Styrene/acrylic	S/A	1.10	2.42	100	am
Styrene/maleic anhydride	SMA	1.13	2.48	115	am
Vinyls					
Polyvinyl chloride	PVC	0.37	0.82	85	am
Chlorinated PVC	CPVC	1.19	2.62	100	am
Acrylics					
Polymethylmethacrylate	PMMA	0.85	1.87	100	am
PVC/acrylic blend	PVC/MA	1.50	3.31	90	am
Fluoropolymers					
Polychlorotrifluoroethylene	CTFE	45.00	99.18	30	235
Polytetrafluoroethylene	PTFE	7.00	15.43	27	325
Polyvinylidene fluoride	PVDF	6.75	14.88	- 30	170
Polyesters					
Polyethylene terephthalate	PET	0.54	1.19	80	250
Polyester, PETG	PETG	0.98	2.16	80	am
Polybutylene terphthalate	PBT	1.45	3.20		235
Polyarylate	PAR	2.40	5.29	190	am
Liquid crystal polyester	LCP	12.00	26.45		400

Prix et températures de transition

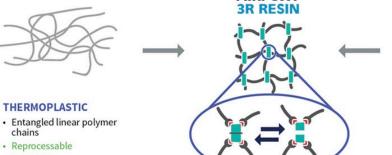
Polyamides (nylons)					
Nylon type 6	N6	1.30	2.87	60	220
Nylon type 66	N66	1.40	3.07	70	260
Nylon type 11	N11	3.35	7.38	- 70	185
Nylon type 12	N12	3.30	7.26		190
Polyphthalamide	PPA				310
Polya mideim ide	PAI	26.10	57.52	275	am
Polyimides					
Polyetherimide	PEI	6.41	14.13	215	am
Polyimide	PI			320	385
Polyethers					
Polyacetal	POM	1.25	2.76	- 75	175
Polycarbonate	PC	1.55	3.42	150	am
Polyphenylene oxide blend	PPO	1.80	3.97	110-190	am
Polyaryletherketone	PAEK	29.50	65.02	138	320-380
Polyetheretherketone	PEEK	33.00	72.73	145	335
Sulfur-containing polymers					
Polyphenylene sulfide	PPS			90	285
Polysulfone	PSF	4.40	9.70	190	am
Polyethersulfone	PES	4.40	9.70	225	am
Polyarylsulfone	PAS	4.40	9.70	220	am
Additional thermoplastics					
Acrylonitrile copolymer	ANC	1.25	2.76	95	am
Polyurethane	TPU	2.10	4.63		am


Vitrimères

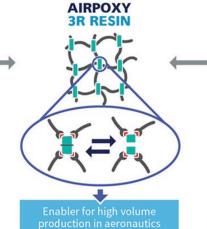
Thermoplastics

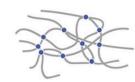
- No crosslinks
- Reprocessable
- Recyclable
- Viscosity drop when heated
- Low thermal/chemical resistance

Vitrimers



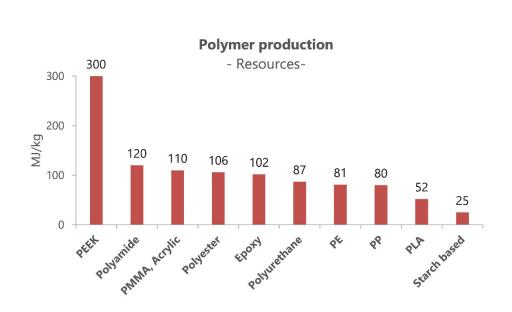
- Dynamic crosslinked network
- Poor thermal/chemical resistance
- Malleable when heated
- Reprocessable
- Recyclable

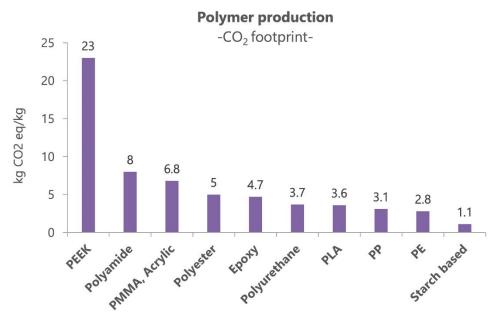

Thermosets



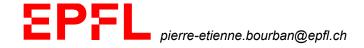
- Crosslinked network
- Good mechanical properties
- High thermal/chemical resistance
- Non-reprocessable
- Non-recyclable
- Often low viscosity

- · Recyclable
- · Soluble
- · Bad chemical resistance
- · Softens when heated


THERMOSET


- · Covalently crosslinked
- · Remains hard when heated
- Insoluble
- · Chemical resistance
- · Good mechanical properties
- Non-processable
- Non-recyclable

Short cycle times · New repair concepts · Welding · Transport at room temperature · Recycling



Ressources nécessaires et impact CO_2 d'un kilo de matrice

Sources: Ecoinvent database; Ashby, Materials and sustainable development

Les matrices: exemples d'applications

Thermodurcis

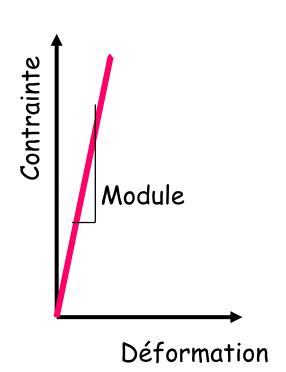
Matrice	Applications	propriétés
Epoxydes (EP)	Avionique, sport et loisirs (skis, tennis, voile, casques, F1), circuits imprimés, robots	Excellente adhésion, bonnes propriétés mécaniques et chimiques
Polyesters (UP)	Génie civil, architecture, voile (loisir)	Bon marché, faible viscosité, bonne résistance chimique
Phénoliques (PF)	Connectique, mécanique, composites HT, imprégnation de noyau pour sandwich	Fragile, résistant à la T
Polyimides (PI)	Connectique, mécanique, composites HT (200°C)	Fragile, difficile à mettre en œuvre, résistant à la T

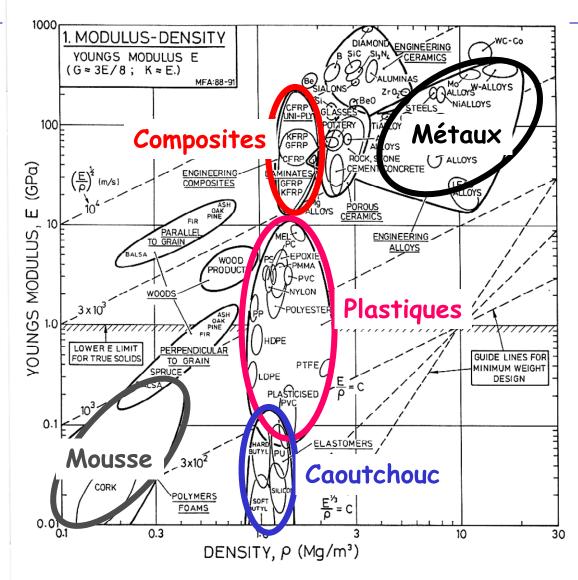
Thermoplastes

Polyétheréthercétone (PEEK)	Avionique, pièces technique (palliers), composites HT	S-C, Tf : 334°C, T _{max} : 240°C Disponible sous forme de préimprégnés
Polysulfone (PSU)	Connecteurs, pièces mécaniques, microtechnique	Amorphe, T _g : 320°C, T _{max} : 220°C
Polysulphure de phénylène (PPS)	Mécanique, microtechnique	S-C, Tf : 288°C, T _{max} : 240°C
Polyamide (PA)	Dans tous les domaines	S-C, Tf : 176-220°C, T _{max} : 110°C
Polyester (PET, PBT)	Mécanique, microtechnique	S-C, T _g : 70°C, T _{max} : 110°C
Polycarbonate (PC)	Mécanique, microtechnique	Amorphe, T _g : 141°C, T _{max} : 120°C
Polypropylène (PP)	Automobile (pare-chocs, pièces de carrosserie), microtechnique	S-C, Tf: 140°C, T _{max} : 90°C

Les classes de composites

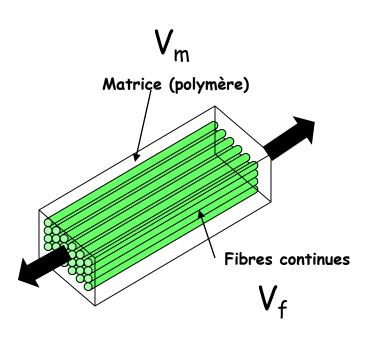
Composites de grande diffusion


Matrices	Renforts	Applications
Polyester	fibres de verre	- bateaux
Vinylester	(mats, tissus,	- carrosserie
Epoxyde	fibres courtes)	d'automobiles et de
Polypropylene		trains
Polyamide		- canalisations,
		réservoir
		- génie chimique


Composites hautes performances

Matrices	Renforts	Applications
Polyetherehtercétone	carbone,	- éléments d'avions
(PEEK)	aramide,	- raquettes de tennis,
Polyimides	(unidirectionnels	club de golf
Polyphenylene	, tissus)	- pales d'hélicoptère
sulfide (PPS)		
Epoxyde		

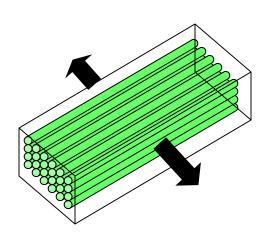
Propriétés des composites: module - densité



Micromécanique

- > Introduction
- > Lois des mélanges
- > Fibres courtes

Fibres continues: propriétés longitudinales



$$\varepsilon_f = \varepsilon_m = \varepsilon_L$$

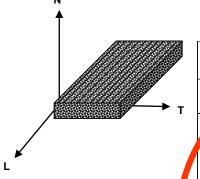
$$F = F_m + F_f$$

$$E_1 = E_f V_f + E_m (1 - V_f) = E_L$$

Fibres continues: propriétés transversales

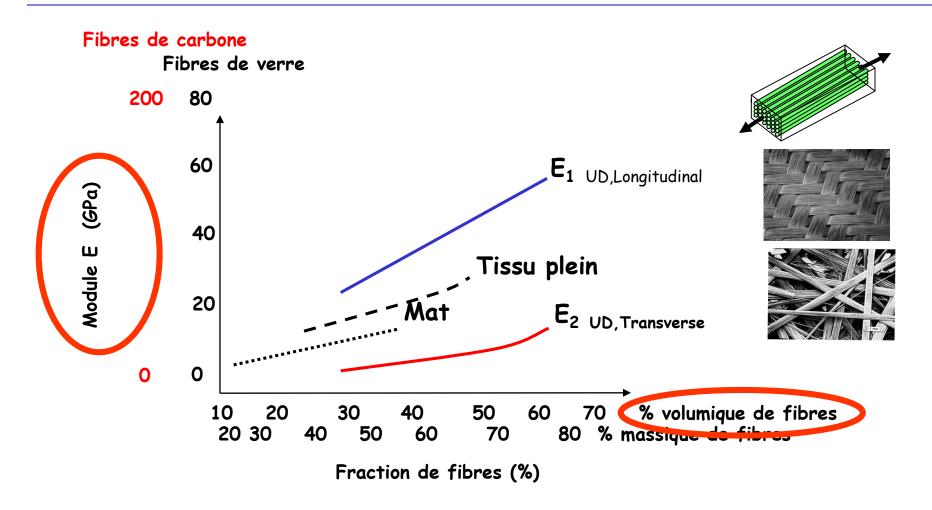
$$d = d_m + d_f$$

$$E_{2} = \frac{E_{m}E_{f}}{E_{f}(1 - V_{f}) + E_{m}V_{f}} = E_{T}$$


Propriétés des matériaux composites unidirectionnels

	METALIX			COMPOSITES A MATRICE ORGANIQUE			
	Ac35NDC1	Alliage Al	Alliage Ti	Bore époxy	Carbone HP époxy	Carbone HM époxy	√erre R époxy
Module de Young E (MPa)	200'000	72'000	110'000	220'000	130'000	200'000	53'000
Résistance à la rupture en traction σ_r (MPa)	1850	500	1000	2000	1000 à 1300	1000	1800 à 2000
Masse volumique ρ (g/cm ³)	7.9	2.8	4.45	2.1	1.5	1.7	2
Module spécifique E/ρ (MPam³/kg)	25	25	25	105	87	118	26
Résistance spécifique σ/ρ (MPam³/kg)	0.24	0.18	0.23	0.95	0.65 à 0.85	0.60	0.90 à 1

Propriétés de composites unidirectionnels avec 60% de fibres en volume

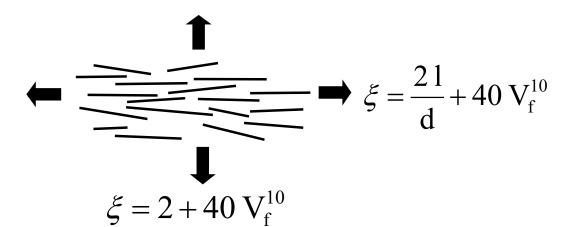


Propriétés des composites unidirectionnels

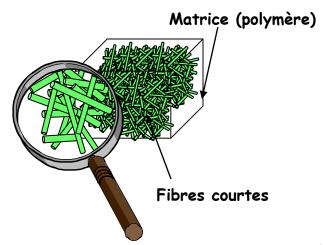
	Verre S Epoxy	Kevlar 49 Epoxy	Carbone HR Epoxy	Carbone HM Epoxy	Bore Epoxy
vf	65 %	65 %	65 %	65 %	55 %
Pensité ρ	2.04 g/cm ³	1.36 g/cm ³	1.56 g/cm ³	1.5 g/cm ³	1.97 g/cm ³
EL	56 GPa	86 GPa	145 GPa	270 GPa	220 GPa
Ε _τ	16 GPa	5.6 GPa	10 GPa	7 GPa	2.3 GPa
V LT	0.26	0.32	0.29	0.3	0.26
G _{LT}	7 GPa	2.5 GPa	5.5 GPa	5.7 GPa	6.9 GPa
σ _r traction	1.75 GPa	1.5 GPa	1.2 GPa	0.95 GPa	1.3 GPa
σ _r traction	0.04 GPa	0.03 GPa	0.08 GPa	0.035 GPa	0.065 GPa
σ_{rL} compression	0.9 GPa	0.28 GPa	1 GPa	0.75 GPa	2.85 GPa
σ_{rT} compression	0.15 GPa	0.14 GPa	0.25 GPa	0.2 GPa	0.03 GPa
y _{rLT} cisa llement	0.06 GPa	0.05 GPa	0.1 GPa	0.055 GPa	0.06 GPa

Rigidités à volonté

Equations de Halpin-Tsai


$$P = \frac{P_m (1 + \xi \chi V_f)}{1 - \chi V_f}$$

$$\xi(E_T)=2$$


$$\xi(E_T) = 2$$
$$\xi(G_{LT}) = 1$$

$$\chi = \frac{P_f - P_m}{P_f + \xi P_m}$$

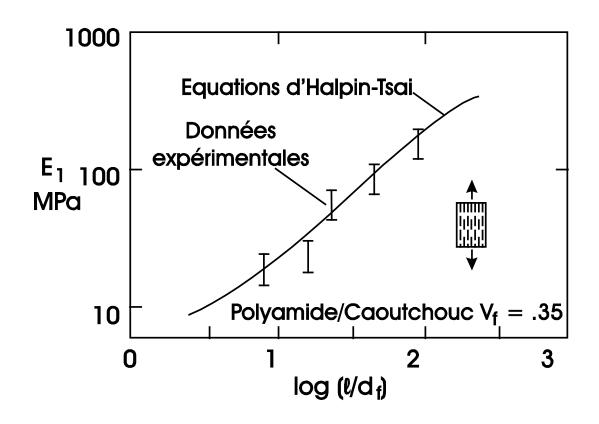
Composites à fibres discontinues



Facteur de formes I/d

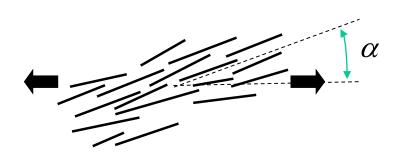
Fraction volumique Vf

Qualité des interfaces

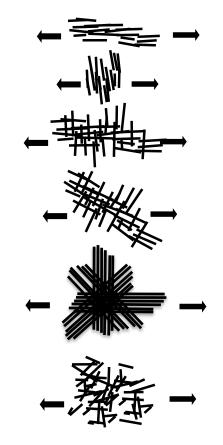

Distribution statistique de l'orientation des fibres

Distribution de la longueur des fibres

$$E = \eta_{\text{orientation}} \eta_{\text{longueur fibre}} E_f V_f + E_m (1 - V_f)$$


Composites à fibres courtes

Composites à fibres courtes orientées


$$E = \eta_{orientation} \eta_{longueur fibre} E_f V_f + E_m (1 - V_f)$$

$$\eta_{orientation} \approx \cos^4 \alpha$$

$$\eta_{orientation} \approx \sum_{n} p_n \cos^4 \alpha_n$$

$$\sum_{n} p_{n} = 1$$

$$p. =$$

$$\eta_o =$$

$$p_n = 1 \qquad \qquad \eta_o = 1\cos^4 0 = 1$$

$$p_n = 1 \qquad \qquad \eta_o = 1\cos^4 90 = 0$$

$$p_1 = p_2 = \frac{1}{2}$$
 $\eta_o = \frac{1}{2}\cos^4 0 + \frac{1}{2}\cos^4 90 = \frac{1}{2}$

$$p_1 = p_2 = \frac{1}{2}$$
 $\eta_o = \frac{1}{2}\cos^4 45 + \frac{1}{2}\cos^4(-45) = \frac{1}{4}$

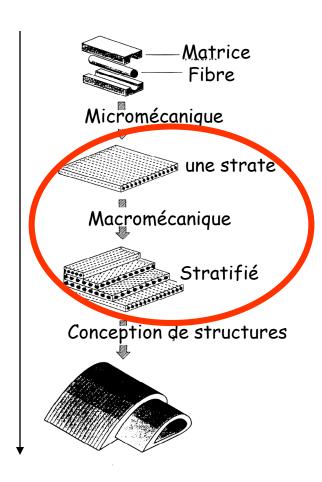
$$p_1 = p_2 = p_3 = p_4 = \frac{1}{4}$$

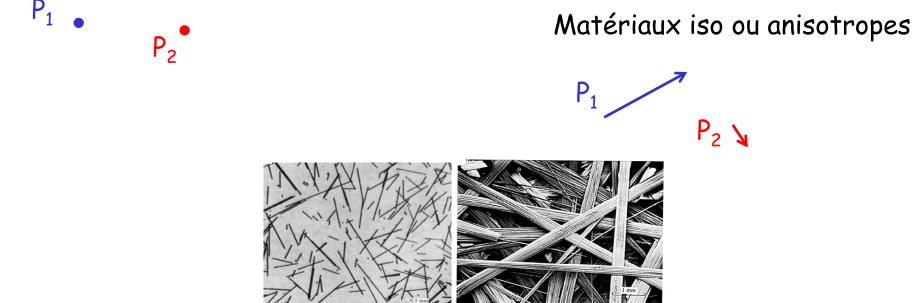
$$\eta_o = \frac{1}{4}(\cos^4 0 + \cos^4 90 + \cos^4 45 + \cos^4 (-45) = \frac{3}{8}$$

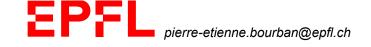
Aléatoire 3dim
$$\eta_o = \frac{1}{5}$$
 Aléatoire 2dim
$$E = \frac{3}{8} E_0 + \frac{5}{8} E_{_{90}}$$

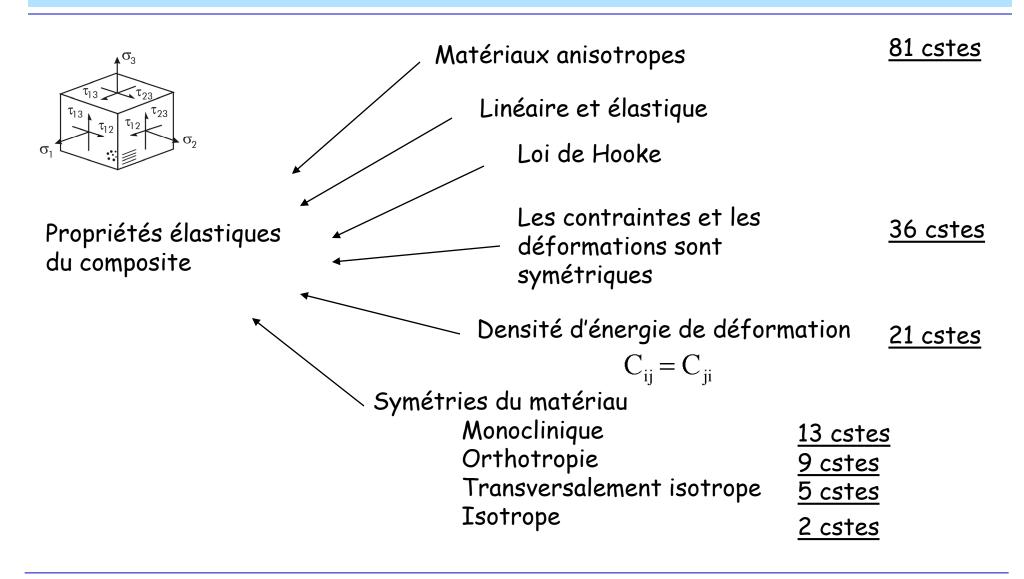
Propriétés des polymères chargés de fibres courtes

Propriété à 23°C	Zytel®		Zytel® 40% fibres courtes		Zytel® 50% fibres courtes	
Fropriete a 23 C	0 % HR	50% HR	0 % HR	50% HR	0 % HR	50% HR
Contrainte au seuil plastique σ _ν (MPa)	84 MPa	48 MPa	205 MPa	135 MPa	230 MPa	155 MPa
Allongement à la rupture ε _γ (%)	50 %	>300 %	3 %	6 %	2 %	5 %
Module de flexion E	2.7 GPa	0.9 GPa	10.5 GPa	6.5 GPa	23.5 GPa	8.5 GPa
Résistance au choc entaillé lzod	50 J/m	200 J/m	160 J/m	214 J/m	180 J/m	270 J/m
Résistance au choc Charpy	Pas de rupture		60 kJ/m ²		65 kJ/m ²	
Densité ρ	1.14 g/cm ³		1.45 g/cm ³		1.58 g/cm ³	
Point de fusion	245°C		233 °C		233 °C	
Température de flexion sous charge de 1.8 MPa	65 °C		224 °C			
Absorbtion d'eau en 24h (immersion)	1.6 %					
Retrait au moulage	1.3 %		0.18 %		0.16 %	

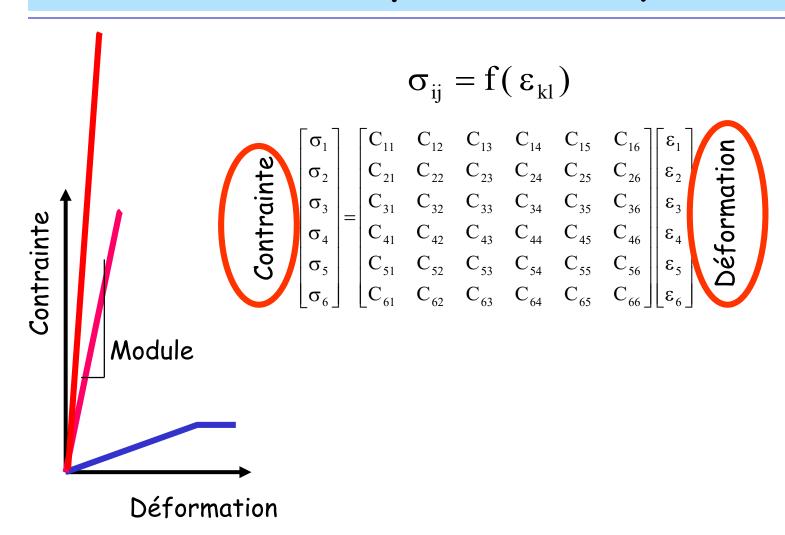

Comparaison des propriétés d'un copolymère PA66/6 (Nylon) non chargé et chargé avec des fibres courtes


Macromécanique


- > Introduction, tenseurs, anisotropie
- > Comportement d'une strate
- > Composites orthotropes sous contraintes planes
- > Comportement du stratifié


Anisotropie

Matériaux homo ou hétérogènes



Elasticité des matériaux anisotropes

Propriétés élastiques

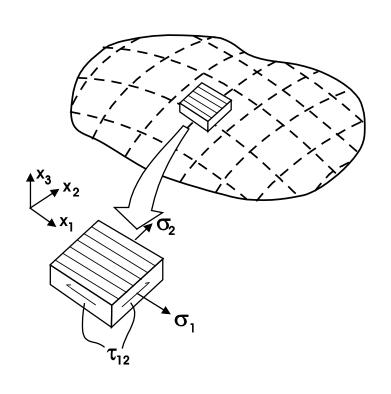
Symétries des matériaux

Monocliniques (13)

Orthotropes (9)
$$[C] = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$

Transversalement isotropes (5) $2 \leftrightarrow 3$ $C_{22} = C_{33}$ etc

Isotropes(2)

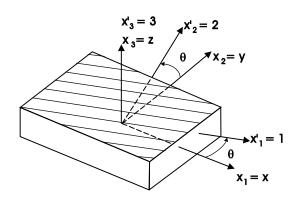

Constantes de l'ingénieur

$$\left\{ \mathcal{E} \right\} = \left[S \right] \left\{ \sigma \right\}$$

$$\left\{ \begin{aligned} \mathcal{E}_{1} &= -v_{21} \mathcal{E}_{2} = -v_{21} \frac{\sigma_{2}}{E_{2}} \\ \mathcal{E}_{2} &= -v_{21} \frac{\sigma_{2}}{E_{2}} \\ \mathcal{E}_{3} \\ \mathcal{V}_{23} \\ \mathcal{V}_{31} \\ \mathcal{V}_{12} \end{aligned} \right\} = \begin{bmatrix} \frac{1}{E_{1}} & -\frac{v_{21}}{E_{2}} & -\frac{v_{31}}{E_{3}} & 0 & 0 & 0 \\ -\frac{v_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{v_{32}}{E_{3}} & 0 & 0 & 0 \\ -\frac{v_{13}}{E_{1}} & -\frac{v_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{31}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{12}} \end{bmatrix} \begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \tau_{23} \\ \tau_{31} \\ \tau_{12} \end{bmatrix}$$

$$S_{12}=S_{21}~{
m donc}-\frac{v_{21}}{E_2}=-\frac{v_{12}}{E_1}$$
 pour un matériau orthotrope

Matériaux orthotropes en contraintes planes (3=0)


$$[S_{ij}] = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} = \begin{bmatrix} 1/E_1 & -v_{21}/E_2 & 0 \\ -v_{12}/E_1 & 1/E_2 & 0 \\ 0 & 0 & 1/G_{12} \end{bmatrix}$$

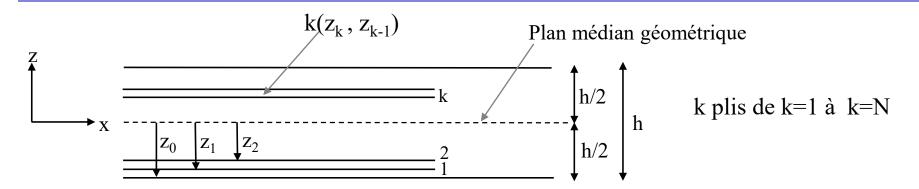
$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} \end{bmatrix}$$

$$Q_{11} = \frac{E_1}{(1 - v_{12}v_{21})} \qquad Q_{22} = \frac{E_2}{(1 - v_{12}v_{21})}$$

$$Q_{12} = \frac{v_{12}E_2}{(1 - v_{12}v_{21})} = \frac{v_{21}E_1}{(1 - v_{12}v_{21})} \qquad Q_{66} = G_{12}$$

Importance de l'orientation des fibres

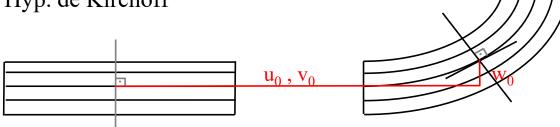
$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$

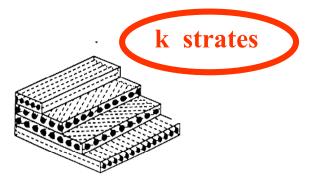

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} m^2 & n^2 & 2mn \\ n^2 & m^2 & -2mn \\ -mn & mn & m^2-n^2 \end{bmatrix}$$

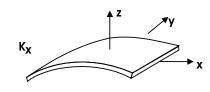
$$\begin{bmatrix} \boldsymbol{\sigma}_x \\ \boldsymbol{\sigma}_y \\ \boldsymbol{\tau}_{xy} \end{bmatrix} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \boldsymbol{\epsilon}_x \\ \boldsymbol{\epsilon}_y \\ \boldsymbol{\gamma}_{xy} \end{bmatrix}$$

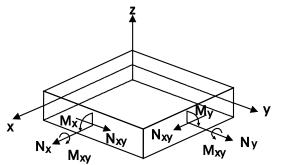
$$\begin{split} &\overline{Q}_{11} = m^4 Q_{11} + 2m^2 n^2 (Q_{12} + 2Q_{66}) + n^4 Q_{22} \\ &\overline{Q}_{21} = \overline{Q}_{12} = m^2 n^2 (Q_{11} + Q_{22} - 4Q_{66}) + Q_{12} (m^4 + n^4) \\ &\overline{Q}_{22} = n^4 Q_{11} + 2m^2 n^2 (Q_{12} + 2Q_{66}) + m^4 Q_{22} \\ &\overline{Q}_{16} = m^3 n (Q_{11} - Q_{12}) + mn^3 (Q_{12} - Q_{22}) - 2mn(m^2 - n^2) Q_{66} \\ &\overline{Q}_{26} = mn^3 (Q_{11} - Q_{12}) + m^3 n (Q_{12} - Q_{22}) + 2mn(m^2 - n^2) Q_{66} \\ &\overline{Q}_{66} = m^2 n^2 (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66}) + (m^4 + n^4) Q_{66} \end{split}$$


Elasticité des stratifiés


- (H)CLT: Classical Laminate Theory
 - Linéaire élastique

 \mathcal{E}_{x}


- Orthotrope
- Membrane, contraintes planes $(\sigma_3, \varepsilon_3 = 0)$ = pas de déformation selon l'axe z, seulement déformation hors du plan
- Hyp. de Kirchoff



Elasticité des stratifiés, k couches

$$\begin{bmatrix} \mathbf{N} \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}^0 \\ \boldsymbol{\kappa} \end{bmatrix}$$

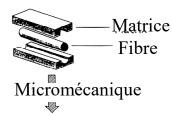
$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} K_{x} \\ K_{y} \\ K_{xy} \end{bmatrix}$$

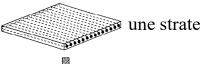
$$\begin{bmatrix} \mathbf{M_{xy}} & \mathbf{N_{y}} \\ \mathbf{M_{y}} \\ \mathbf{M_{xy}} \end{bmatrix} = \begin{bmatrix} \mathbf{B_{11}} & \mathbf{B_{12}} & \mathbf{B_{16}} \\ \mathbf{B_{12}} & \mathbf{B_{22}} & \mathbf{B_{26}} \\ \mathbf{B_{16}} & \mathbf{B_{26}} & \mathbf{B_{66}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\epsilon_{x}^{0}} \\ \boldsymbol{\epsilon_{y}^{0}} \\ \boldsymbol{\gamma_{xy}^{0}} \end{bmatrix} + \begin{bmatrix} \mathbf{D_{11}} & \mathbf{D_{12}} & \mathbf{D_{16}} \\ \mathbf{D_{12}} & \mathbf{D_{22}} & \mathbf{D_{26}} \\ \mathbf{D_{16}} & \mathbf{D_{26}} & \mathbf{D_{66}} \end{bmatrix} \begin{bmatrix} \mathbf{K_{x}} \\ \mathbf{K_{y}} \\ \mathbf{K_{xy}} \end{bmatrix}$$

$$A_{ij} = \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k} - z_{k-1} \right) \\ B_{ij} = \frac{1}{2} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{2} - z_{k-1}^{2} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right) \\ D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right)$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{2} - z_{k-1}^{2} \right)$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-1}^{3} \right)$$

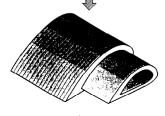



Couplages

$$\begin{bmatrix} \mathbf{N}_{x} \\ \mathbf{N}_{y} \\ \mathbf{N}_{xy} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{16} \\ \mathbf{A}_{12} & \mathbf{A}_{22} & \mathbf{A}_{26} \\ \mathbf{A}_{16} & \mathbf{A}_{26} & \mathbf{A}_{66} \end{bmatrix} \begin{bmatrix} \boldsymbol{\epsilon}_{x}^{0} \\ \boldsymbol{\epsilon}_{y}^{0} \\ \boldsymbol{\gamma}_{xy}^{0} \end{bmatrix} + \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{16} \\ \mathbf{B}_{12} & \mathbf{B}_{22} & \mathbf{B}_{26} \\ \mathbf{B}_{16} & \mathbf{B}_{26} & \mathbf{B}_{66} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{x} \\ \mathbf{K}_{y} \\ \mathbf{K}_{xy} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{M}_{\mathbf{x}} \\ \mathbf{M}_{\mathbf{y}} \\ \mathbf{M}_{\mathbf{xy}} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{16} \\ \mathbf{B}_{12} & \mathbf{B}_{22} & \mathbf{B}_{26} \\ \mathbf{B}_{16} & \mathbf{B}_{26} & \mathbf{B}_{66} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}_{\mathbf{x}}^{0} \\ \boldsymbol{\varepsilon}_{\mathbf{y}}^{0} \\ \boldsymbol{\gamma}_{\mathbf{xy}}^{0} \end{bmatrix} + \begin{bmatrix} \mathbf{D}_{11} & \mathbf{D}_{12} & \mathbf{D}_{16} \\ \mathbf{D}_{12} & \mathbf{D}_{22} & \mathbf{D}_{26} \\ \mathbf{D}_{16} & \mathbf{D}_{26} & \mathbf{D}_{66} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{\mathbf{x}} \\ \mathbf{K}_{\mathbf{y}} \\ \mathbf{K}_{\mathbf{xy}} \end{bmatrix}$$

De la fibre à la structure



Macromécanique

Conception de structures

$$\begin{split} E_1 &= E_f V_f + E_m (1 - V_f) \\ Q_{11} &= \frac{E_i}{(1 - v_{12} v_{21})} \\ \overline{Q}_{11} &= m^4 Q_{11} + 2m^2 n^2 (Q_{12} + 2Q_{66}) + n^4 Q_{22} \\ \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} &= Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} &= \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} \\ A_{ij} &= \sum_{k=1}^{N} (\overline{Q}_{ij})_k (z_k - z_{k-1}) \\ \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} &= \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} K_x \\ K_y \\ K_{xy} \end{bmatrix} \\ E_x &= \frac{A_{11}A_{22} - A_{12}^2}{h A_{22}} \\ \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} &= \begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{12} & a_{22} & 0 \\ 0 & 0 & a_{66} \end{bmatrix} \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} + \begin{bmatrix} N_x^T \\ N_y^T \\ 0 \end{bmatrix} \\ \end{bmatrix} \\ E_x &= \frac{A_{11}A_{22} - A_{12}^2}{h A_{22}} \\ \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} &= \begin{bmatrix} \frac{1}{E_x} & -\frac{v_{xy}}{E_x} & 0 \\ -\frac{v_{yx}}{E_y} & \frac{1}{E_y} & 0 \\ 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} \end{aligned}$$

Mx élastiques Porosité nulle/minimale Interfaces fibre-matrice parfaites/optimales

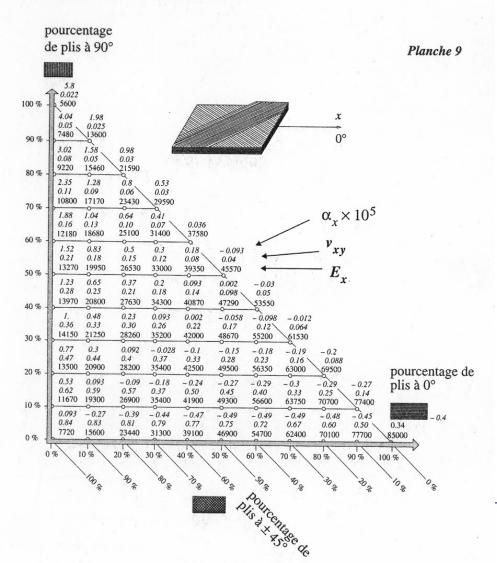
Orientations des fibres, m, n

Orthotropie Contraintes planes

Adhésion entre plis parfaite/optimale

Symétries d'empilement Effets de couplage

Cas de charges Propriétés effectives Mécanique des matériaux

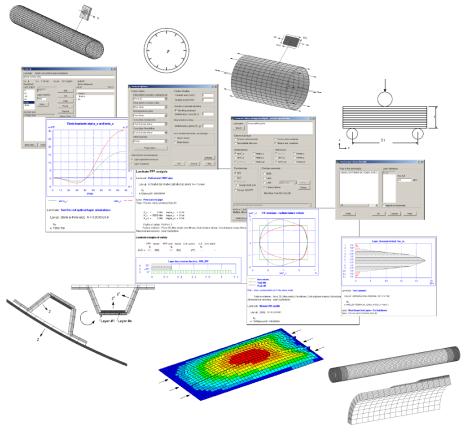

Stratifié kevlar/époxyde

Guides de conception exp D. Gay

 $V_f = 60 \%$ de fibres en volume

épaisseur du pli : 0.13 mm

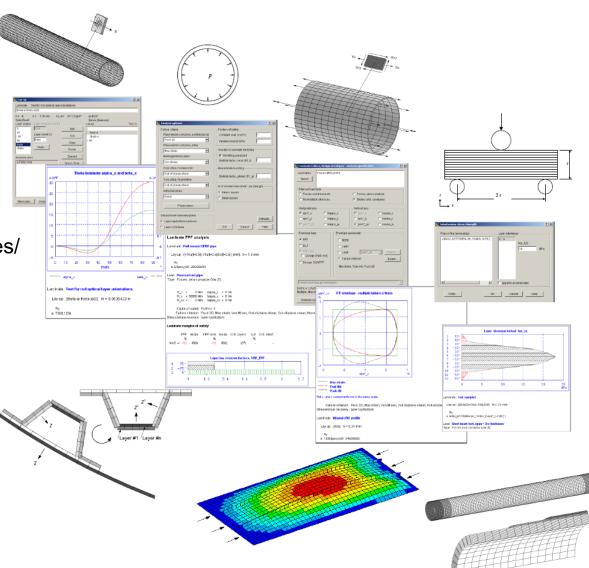
caractéristiques du pli : cf. paragraphe 3.3.3.

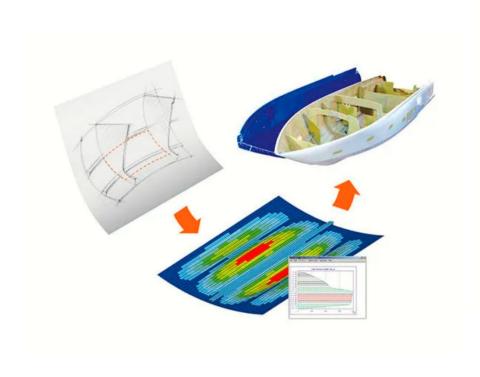


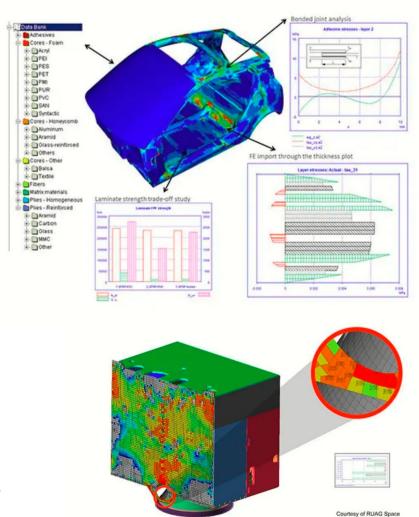
ESAComp https://www.altair.com/composites/

The Quick Start Guide demonstrates the following basic functions:

- O How to specify a ply
- O How to specify a laminate
- O Laminate 2.5D behavior analysis
- O Laminate load response

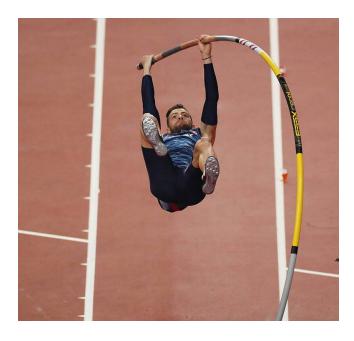

- O Laminate FPF analysis
- O Plate analysis
- O Curved plate analysis
- o Cylindrical shell analysis


Mécanique des composites stratifiés



https://www.altair.com/composites/

FEM



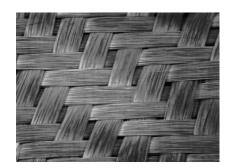
https://filecr.com/windows/esacomp/?id=13436849765

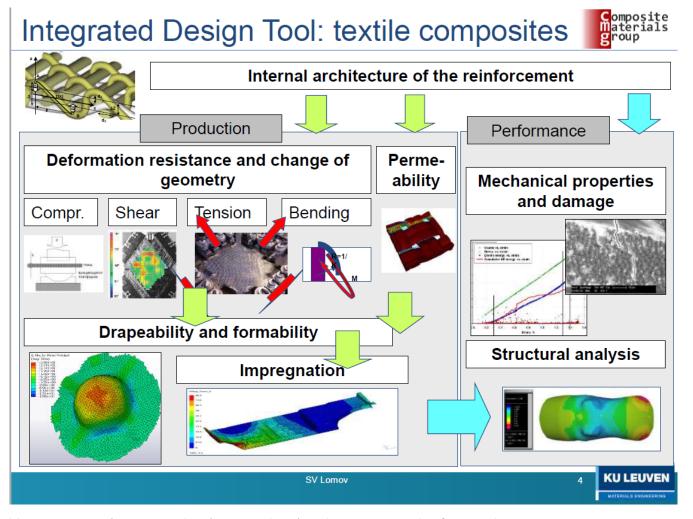
Elasticité des stratifiés



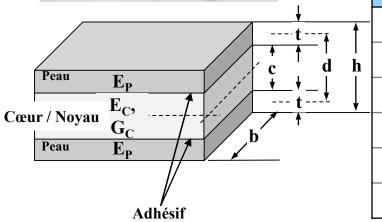
https://www.ouest-france.fr/sport/athletisme/championnats-du-monde/mondiaux-d-athletisme-saut-la-perche-valentin-lavillenie-sixeme-de-la-finale-6545575

https://sportinnov.wordpress.com/2014/11/21/les-protheses-flex-foot-cheetah-quand-lhomme-et-la-technologie-ne-font-quan/

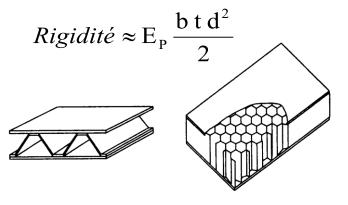



https://www.nike.com/fr/running/vaporfly

Les composites textiles



https://www.mtm.kuleuven.be/onderzoek/scalint/Composites/software/wisetex

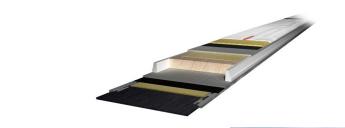


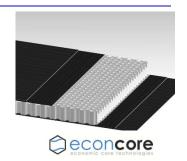
Les structures sandwich

Peaux						
	$\rho [kg/m^3]$	E [GPa]	σ [MPa]			
Métal	2700-8000	70-210	200-1000			
Bois	~500	~12	20-40			
Composites UD	~1600	40-200	1000-1200			
Composites bi-directionnels	~1600	15-100	200-800			
Mats	~1700	~10	80-150			

Âme/ Cœur Noyau					
	$\rho [kg/m^3]$	τ [MPa]			
Nid d'abeilles (Al/ Nomex/TP)	20-100	0.2-2			
Balsa	150	2			
Mousse	15-80	0.2-3			

Corrugated


Honeycomb


+ Adhésifs

Applications

Aerospatiale Aéronautique Sport (skis, planches à voiles, F1) Ferrovière

